
1

Spark DPU
Ofir Farjon | UCF Workshop 2023

2

• Introduction

• Motivation - Shuffle

• Proposed Solution

• Architecture Components

• Current Status

Agenda

3

What is Spark?
A brief history

Introduction of MapReduce
Jeffrey Dean and Sanjay Ghemawat
published a paper called “MapReduce:
Simplified Data Processing on Large
Clusters”.

2004

Hadoop
Mike Cafarella and Doug Cutting—
were so convinced of MapReduce’s
importance that they decided to
build a free clone of the system
from scratch. They eventually called
their project Hadoop.

2006.
SparkUCX Shuffle Plugin
Uses RDMA to perform shuffle data
transfers in Spark.

2019

Apache Spark
Spark (like Hadoop) is a data
processing engine, but it has some
benefits over Hadoop, e.g. in-
memory processing

2014
Nvidia Rapids for Spark
Accelerator for Apache Spark.

2020

SparkUCX with AM
Shuffle plugin to perform shuffle
data transfers using UCX with AM.

2021

SparkDPU
Shuffle plugin for Spark utilizing
Nvidia DPU and UCX for offloading
network communication and using
NVMe for data storage.

2023

4

What is Spark?
MapReduce

• MapReduce is a programming model for processing and generation of large datasets.

• Map function, written by the user, takes an input pair and produces a set of intermediate key-value pairs.

• The MapReduce library groups together all intermediate values associated with the same intermediate key and passes them to
the Reduce function

• The Reduce function, also written by the user, takes an intermediate key and a set of values for that key. It merges these values to
form a possibly smaller set.

• Word count: the problem of counting the number of occurrences of each word in a large collection of documents

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

MapReduce: Simplified Data Processing on Large Clusters

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

5

Motivation
What is Shuffle?

• In Apache Spark, shuffling happens when data need to be redistributed across the cluster.

• By default, shuffle relies on traditional socket-based TCP/ IP communication.

• Shuffling can significantly impact performance in Spark, especially for large datasets:

“When data is growing explosively over time, the amount of data that needs Shuffle is also increasing, and it is found that 30%
of the time is spent on Shuffle exchanging data in overall task execution."

6

Execution Overview

MapReduce: Simplified Data Processing on Large Clusters

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

7

Proposed Solution
Design

• Host

• Writes data to the NVMe drive

• Updates DPU with the locations of the blocks.

• Sends fetch requests to DPUs.

• DPU

• Serves fetch block requests from other hosts by reading
blocks from the NVMe to the host memory and sending
them back to the requester using RDMA.

8

Proposed Solution
Main goal: achieve performance improvement, by leveraging hardware resources utilization

• Network - improve network capabilities

• Increase bandwidth by using RDMA

• Future optimization: move the progress task to the DPU
by implementing RNDV write operation. According to our
tests, it can potentially improve network capabilities.

• Reduce number of endpoints: instead of having
O(#Executors * #Executors) connections, we will only
need O(#Executors * #DPUs) = O(#Executors * #nodes)
connections.

 #Executors >> #Nodes

• Storage - improve I/O capabilities:

• By using multiple fast storage NVMe devices.

• Offloading – improve CPU utilization:

• By using DPU to handle fetch block requests and
progress queues.

9

Architecture Components

Host

nvkv

NVMe

SPDK

DPDK

jnvkv

UCX

JUCX

Spark

DPU

nvkv

SPDK

DPDK

UCX

Spark service

RDMA

10

Storage

Host
DPU

nvkv

NVMe

SPDK

nvkv

SPDK

BB BB BB BB

nvkv

QP

Post
CMD

Poll
Comp

DPDK

RDMA

DPDK

11NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Storage

Data Layout

• Raw data

• Block locations are kept in
memory (DPU) instead of
index files.

Executor[0] region
Map 0, reduce 0

…

Map 0, reduce n

Map 1, reduce 0

…

Map 1, reduce n

…

Map k, reduce 1

…

Map k, reduce n

…

Storage device

Executor[m] regionMap 0, reduce 0

…

Map 0, reduce n

Map 1, reduce 0

…

Map 1, reduce n

…

Map k, reduce 1

…

Map k, reduce n

…

12

Host - DPU protocol
Message types

• Host -> DPU

• nvkv context information

• Blocks information

• Fetch block Request

• DPU -> Host

• nvkv remote context address

• Fetched block data

13

SparkDPU Shuffle Manager

• Shuffle Manager

• Initializes nvkv.

• Connects to local DPU and sends nvkv context with BB
information.

• Connects to remote nvkv.

• Establishes connections with all DPUs in the cluster.

• Shuffle Writer

• Writes blocks to NVMe as raw data.

• Updates DPU with blocks' offsets and lengths.

• Shuffle Reader

• Sends fetch block requests to the DPU that belongs to
the host owning the blocks.

14NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

DPU

• nvkv context is received
from the host:

• Nvkv QP ctrl registers
address+mkey

• Huge pages address
translation table (virtual to
physical address)

• Host BB memory
information

• RDMA is used to control
remote NVMe.

• Block addresses received
from host are kept in
memory (DPU) instead of
index files.

• Host memory is used for
reading blocks.

• Cross GVMI is used for
sending blocks contents
from the DPU to the host.

Host

DPU

nvkv

NVME

SPDK

nvkv

SPDK

QP

nvkv context

Post
CMD

Poll
Comp

DPDK

Host sending locations of
blocks in storage device.

Fetch block request

DPU

RDMA

DPDK

Spark Spark service

15

SparkDPU
Design Chart

16

Current Status

• Stable POC, supporting large scale

• Setup:

• Cluster of 7 nodes.

• Each node has a DPU, 2 NVMe and >200GB of memory.

• Benchmark: GroupByTest (Maximizing #Executors, running with 1 core and 10GB of memory each).

• Results

1717

Links and appendices

MapReduce: Simplified Data Processing on Large Clusters

https://github.com/openucx/sparkucx

https://github.com/NVIDIA/spark-rapids

https://github.com/NVIDIA/sparkucx

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf
https://github.com/openucx/sparkucx
https://github.com/NVIDIA/spark-rapids
https://github.com/NVIDIA/sparkucx

	Slide 1: Spark DPU
	Slide 2
	Slide 3: What is Spark?
	Slide 4: What is Spark?
	Slide 5: Motivation
	Slide 6: Execution Overview
	Slide 7: Proposed Solution
	Slide 8: Proposed Solution
	Slide 9: Architecture Components
	Slide 10: Storage
	Slide 11: Storage
	Slide 12: Host - DPU protocol
	Slide 13: SparkDPU Shuffle Manager
	Slide 14: DPU
	Slide 15: SparkDPU
	Slide 16: Current Status
	Slide 17: Links and appendices

