An Implementation of LCIl Network
Backend Using UCX

Weixuan Zheng, Jiakun Yan, Omri Mor, Marc Snir
University of lllinois Urbana-Champaign

Introduction

BSP v.s. AMTs

e MPI + Bulk-Synchronous Programming (BSP) dominates traditional HPC programming.

e BSP has its limitations
o Unnecessary global synchronization.
o High demands for balanced loads across processes.
e Asynchronous many-task runtime systems (AMTSs) can potentially solve the limitations.
o Computation-communication overlapping.
o Automatic load balancing of fine-grained tasks.
o Remove unnecessary synchronization.

New Communication Characteristics

e AMTs lead to different communication characteristics.
More messages.

Smaller messages.

Dynamic communication patterns.

More point-to-point communications.

Multithreaded environment.

e Not unique for AMTSs, but other irregular applications.
o Graph analytics.

o Sparse linear algebra.
o Fast Multipole Method.

e MPI is not optimized for these cases.

o O O O O

LCI Overview

LCI: Current Status

e Designed to work better in the context of new communication characteristics
e A low-level communication library with C API.

e Current backends:

o libibverbs
o libfabric
o UCX

e Existing clients/collaborators:
o Gluon, D-Galois, D-Ligra[1]
o PaRSEC[2]
o HPX[3]

(1] Dathathri, Roshan, et al. "Gluon: A communication-optimizing substrate for distributed heterogeneous graph analytics.” Proceedings of the 39th
ACM SIGPLAN conference on programming language design and implementation. 2018.

[2] Mor, Omri, George Bosilca, and Marc Snir. "Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication
Engine." Proceedings of the 52nd International Conference on Parallel Processing. 2023.

[3] Yan, Jiakun, Hartmut Kaiser, and Marc Snir. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task System--The LCI
parcelport of HPX." Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and
Analysis. 2023.

Design Principles

e Multithreaded performance as the first priority.
o Minimize interference between threads.
o Use fine-grained try locks.
o Replace the centralized MPI matching queue with hashtable.
e Versatile Communication Interface.
o Various communication primitives.
o Various completion mechanisms.
e Explicit control of communication behaviors and resources.

o Users have direct access to registered buffers.
o Communication protocol can be chosen explicitly.
o Progress function exposed to users.

Communication: Eager Protocol

e For LCl_sendm/recvm
LCl _recv Match , Completion Mechanism
Table
Insert
Poll CQ
) Post Recv
Progress » LCl_packet >
Network
Packet Pool Allocate Backend
Post Send
LCI_send » LCI_packet

Communication: Rendezvous Protocol

e For LCIl _sendl/recvl

LCI_recvl insert > _IH:SIZ
LCI_sendl| RTS
‘W Match
RTR Progress
Progress RDMA

User-provided
Buffer

The LCI Communication backends

Overview

e LCl upper layer

o Message matching

o Packet management

o Rendezvous protocol

o Various completion notification methods
e LCI communication backend layer

o Plain message passing without tag matching supports (send/recv).
o RDMA write with and without signal
o Completion notification through queue polling.

e The backend layer interface are designed initially with libibverbs’ functionality
in mind.

Backend Interface

e Initialization/Finalization:
o LCISD_server init/fina
o LCISD_endpoint_init/fina
e Memory registration:
o LCISD _rma_reg/dereg

e Posting communications (not exhaustive):
o two-sided
m LCISD post_send
m LCISD_post_recv
o one-sided
m LCISD post put
m LCISD post putimm
e Completion polling
o LCISD_ poll_cq

Mapping to libibverbs

e [nitialization/Finalization:

o LCISD_server init/fina ibv_device
o LCISD_endpoint_init/fina array of ibv_gp, ibv_srq
e Memory registration:
o LCISD _rma_reg/dereg ibv_reg_mr/ibv_dereg_mr

e Posting communications:
o two-sided

m LCISD post_send ibv_post_send (IBV_WR_SEND_ WITH_IMM)
m LCISD post recv ibv_post_srqg_recv
o one-sided
m LCISD post_put ibv_post_send (IBV_WR_RDMA_ WRITE)
m LCISD post _putimm iIbv_post_send (IBV_WR_RDMA WRITE_WITH_IMM)

e Completion polling
o LCISD_ poll_cq ibv_poll_cq

General Scheme

e During initialization, the LCI upper layer
o Register a large memory buffer.
o Break it into small buffers (packets).
o Pre-post thousands of receives.
e Inside the progress engine, the LCI upper layer
o Check for completed receives (poll_cq) and react accordingly.
o Re-post receives.

Mapping to UCX

e [nitialization/Finalization:

o LCISD_server init/fina ucp_context_h
o LCISD_endpoint_init/fina ucp_worker_h
e Memory registration:
o LCISD _rma_reg/dereg ucp_mem_map/ucp_mem_unmap

e Posting communications:
o two-sided

m LCISD post_send ucp_tag_send_nbx

m LCISD post recv ucp_tag_recv_nbx
o one-sided

m LCISD post put ucp_put_nbx

m LCISD post putimm ?

e Completion polling
o LCISD_ poll_cq ?

Mimic an RDMA write with signal

e UCP does not provide a “put with signal” primitive similar to
IBV_WR_RDMA_WRITE_WITH_IMM (in ibverbs) or fi_writedata (in
libfabric).

e \We have to use a sequence of “put + fence + send” to mimic it.

e ‘“fence + send’ is called by the callback for ucp_put_nbx

Mimic a completion queue

e All UCP communication operations are posted using
UCP_OP_ATTR_FLAG_NO_IMM_CMPL except for ucp_put_nbx

e Pair each LCISI_endpoint (ucp_worker) with a queue
o Each completion queue entry stores information of a completed operation, including

operation type

protocol number
message size
source/destination rank
pointer to packet
Communication poster

e CQ entries are:
o Created a cq entry inside LCISD_post_* (function to post communications)
o Pushed into CQ when related ucp operation is completed (in the function handler)
o Passed to upper layer (LCIl_progress) when polled

A Suspected Bug with UCP

e ucp_put nbx with UCP_OP_ATTR_FLAG_NO_ IMM_CMPL flag seems to

have a bug
o Callback is invoked (local completion is fine)

o Data is never delivered to remote

e Calling ucp_worker_flush_nbx or ucp_ep_flush_nbx does not help
e Current workaround:

o If ucp_put_nbx completes immediately, explicitly use callback after

o Inucp_put_nbx callback, do not push to CQ, instead push it in callback for send signal
o CQ entry for put (sender side) is not pushed in put callback, but in send callback

Coarse-grained Blocking Locking Issue

e UCP has a more coarse-grained locking scheme than ibverbs.
o Inibverbs, queue pairs, shared receive queues, completion queues have their own locks.
m So posting sends, posting receives, and polling cq do not interfere with each other.
m Typically
e posting sends are performed in worker threads
e posting receives and polling cq are performed in progress threads
o However, UCP uses a single lock to protect a ucp_worker
m So worker threads and progress threads interfere with each other.

e To make it worse, they are blocking locks.
o The progress threads (usually of a small number) can be blocked waiting for worker threads
for a long time.

e \We tried to use a try-lock wrapping all relevant UCP function calls to alleviate

this problem.
o It only works in some cases.

Unmatched Receives when finalizing

During finalization, there can still be unmatched pre-posted receive.
UCX will throw an assertion error if there are unmatched receive
iIbverbs does not require all receive to be matched

Currently finalization function is blank to circumvent the error
o Possibly keep track of all posted receive and cancel them during finalization
o Or allow UCP to automatically cancel unmatched receive in finalization
o Or allow a configuration option to disable the requirement in finalization

Results

Experiment Setup

e Benchmarks on SDSC Expanse
o 2x EPYC 7742 64 cores
o Mellanox ConnectX-6
o HDR InfiniBand (2x50 Gbps)
e Libraries used
o Openmpi 4.1.1 with UCX 1.15
o LCI with ibverbs
o LCI with UCX 1.15
e One thread per core
o Always have one dedicated progress thread in multithreaded case

Multithreaded Ping-pong Benchmark

Node 1 Node 2
| Send/Recv !
Workers :
I Workers
Workers -
I Workers
Workers \

e Small send window (only 1 send/recv per thread), large number of steps (1000)

Latency (ps)

Results: Latency vs. Thread Number

e Latency as a function of thread number
o Thread number: 1, 2, 4, 8, 16, 32, 64, 128

e Libraries compared:
o LCI with UCX backend (without try-lock)
o LCI with ibverbs backend
o MPI with UCX backend

Latency at 8B
1000 Y 100000 Latency at 8kB oo Latency at 256kB
-
~
10000
1000
100

W —
£ 1000 L2)
z = < &
= g 100 '
[
® 100 = =

10 -)

——LCI_UCX ——LClucx 10 —e—LCI_UCX
/ —o— P 10 & —o—MPI -
LCL_IBY LCLIBY LCLIBV
1 —
1 10 100 1000 : !
Thread Number ! 10 Thread Number 1% 1000 1 10 Thread Number 100 1000

Latency (ps)

Discussion of Results

1000

g

[
(=]

e LCI with ibverbs outperforms LCI with UCX and MPI with UCX

o |IB uses finer-grained locks

o UCP progress, send/recv share the same lock

Latency at 8B

10

Thread Number

100

—e—LCIUCK
—e—MPI
LCI_IBY

1000

Latency (ps)

100000

10000

1000

g

10 &

Latency at 8kB

L

10 Thread Number 100

Latency at 256kB

10000
2
1000
W
= //
Z 100
A
-
—@—| C|_UCX
10
—8—MPl
LCI_IBV
1
1000 1 10 Thread Number 100

—8—CI_UCX

—8— MPI

LCI_IBV

1000

Latency (ps)

Discussion of Results

1000

g

[
(=]

e Latency jump of LCI with ibverbs at 128 threads, 8kB message

(©)

(@)

@)

Latency at 8B

10

Thread Number

100

—e—LCIUCK
—e—MPI
LCI_IBY

1000

Latency (ps)

Threads are spread in 2 different sockets

need to experiment with numactl --interleave

100000 Latency at 8kB

10000

1000

g

\\
N

[
o

[
[

10 Thread Number 100

Only 1 progress thread, half of workers will go across sockets

Latency at 256kB

10000
~
1000
@
= //
Z 100
£ ¥
-
—8—LC|_UCX
10 —8—LCI_UCX
oMp —e—MPI
LCI_IBV LCl IRV
1
1000 1 10" Thread Number 100 1000

Latency vs. Thread Number and Latency vs. Message Size

e As message size gets larger, performance gets similar

o Hardware bandwidth becomes the bottleneck

Latency (64 threads)
10000

1000 4’::‘-.

100

Latency (ps)

10
—8—Cl-UCX

—8—MPI
LCI-IBV

1 10 100 1000 10000 100000
Message Size (B)

Results: With vs. Without Try-lock

e LCI with UCX backend, with and without try-lock wrapping around all
UCP functions

e \When unable to obtain the lock, directly return with LCI_ERR_RETRY

Latency at 8B Latency at 256kB
10000 v — Latency at 8kB L0000 v
1000 1000 1000
W w W
= = =
g 100 g 100 g 100
] —8— | Cl without try-lock] o
® ® T
- —8— | Cl with try-lock = =
10 10 10
—&— LCl without try-lock —8— LCl without try-lock
—8— LCl with try-lock —8— LCl with try-lock
1 1 1
1 10 100 1000 1 10 100 1000 1 10 100 1000

Thread Number Thread Number Thread Number

10000 Latency at 8B Latency at 8kB

Latency (ps)

Discussion of Results

e Degrades performance for short messages, Improves performance for
medium messages, no change for long messages

e Hypothesis: try-lock makes progress function obtains the lock more often
o Small message: progress function has little task
o Medium message: progress function has more work

o Long message: hardware becomes the bottleneck

10000 10000 Latency at 256kB

1000 1000 1000

100 100
—8— | Cl without try-lock

Latency (ps)
=
8
Latency (ps)

—&— | Cl with try-lock

10 10 10
—&— LCl without try-lock —8— LCl without try-lock

—8— LCl with try-lock —8— LCl with try-lock

[y
[

10 100 1000 10 100 1000 1 10 100 1000
Thread Number Thread Number Thread Number

Future Work

e Optimize current implementation

e Test with multiple progress threads/devices

e Implement and test the configuration without dedicated progress thread
e Implement the backend using lower-level API: UCT

e Implement LCI API using UCP directly and compare performance

Questions?

	Slide 1: An Implementation of LCI Network Backend Using UCX
	Slide 2: Introduction
	Slide 3: BSP v.s. AMTs
	Slide 4: New Communication Characteristics
	Slide 5: LCI Overview
	Slide 6: LCI: Current Status
	Slide 7: Design Principles
	Slide 8: Communication: Eager Protocol
	Slide 9: Communication: Rendezvous Protocol
	Slide 10: The LCI Communication backends
	Slide 11: Overview
	Slide 12: Backend Interface
	Slide 13: Mapping to libibverbs
	Slide 14: General Scheme
	Slide 15: Mapping to UCX
	Slide 16: Mimic an RDMA write with signal
	Slide 17: Mimic a completion queue
	Slide 18: A Suspected Bug with UCP
	Slide 19: Coarse-grained Blocking Locking Issue
	Slide 20: Unmatched Receives when finalizing
	Slide 21: Results
	Slide 22: Experiment Setup
	Slide 23: Multithreaded Ping-pong Benchmark
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Future Work
	Slide 31: Questions?

