
An Implementation of LCI Network

Backend Using UCX
Weixuan Zheng, Jiakun Yan, Omri Mor, Marc Snir

University of Illinois Urbana-Champaign

Introduction

BSP v.s. AMTs

● MPI + Bulk-Synchronous Programming (BSP) dominates traditional HPC programming.

● BSP has its limitations
○ Unnecessary global synchronization.

○ High demands for balanced loads across processes.

● Asynchronous many-task runtime systems (AMTs) can potentially solve the limitations.
○ Computation-communication overlapping.

○ Automatic load balancing of fine-grained tasks.

○ Remove unnecessary synchronization.

New Communication Characteristics

● AMTs lead to different communication characteristics.
○ More messages.

○ Smaller messages.

○ Dynamic communication patterns.

○ More point-to-point communications.

○ Multithreaded environment.

● Not unique for AMTs, but other irregular applications.
○ Graph analytics.

○ Sparse linear algebra.

○ Fast Multipole Method.

● MPI is not optimized for these cases.

LCI Overview

LCI: Current Status

● Designed to work better in the context of new communication characteristics

● A low-level communication library with C API.

● Current backends:
○ libibverbs

○ libfabric

○ UCX

● Existing clients/collaborators:
○ Gluon, D-Galois, D-Ligra[1]

○ PaRSEC[2]

○ HPX[3]

● GitHub repo: https://github.com/uiuc-hpc/LC[1] Dathathri, Roshan, et al. "Gluon: A communication-optimizing substrate for distributed heterogeneous graph analytics." Proceedings of the 39th

ACM SIGPLAN conference on programming language design and implementation. 2018.

[2] Mor, Omri, George Bosilca, and Marc Snir. "Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication

Engine." Proceedings of the 52nd International Conference on Parallel Processing. 2023.

[3] Yan, Jiakun, Hartmut Kaiser, and Marc Snir. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task System--The LCI

parcelport of HPX." Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and

Analysis. 2023.

Design Principles

● Multithreaded performance as the first priority.
○ Minimize interference between threads.

○ Use fine-grained try locks.

○ Replace the centralized MPI matching queue with hashtable.

● Versatile Communication Interface.
○ Various communication primitives.

○ Various completion mechanisms.

● Explicit control of communication behaviors and resources.
○ Users have direct access to registered buffers.

○ Communication protocol can be chosen explicitly.

○ Progress function exposed to users.

Communication: Eager Protocol

Hash
Table

LCI_send

LCI_recv

Network
Backend

LCI_packet

LCI_packet

Packet Pool

Post Send

Progress

Completion Mechanism

Post Recv

Poll CQ

Insert

Insert

Match

Allocate

● For LCI_sendm/recvm

Communication: Rendezvous Protocol

LCI_sendl RTS

Progress

Progress

User-provided
Buffer

RTR

RDMA

Hash
Table

LCI_recvl
Insert

Insert Match

● For LCI_sendl/recvl

The LCI Communication backends

Overview

● LCI upper layer
○ Message matching

○ Packet management

○ Rendezvous protocol

○ Various completion notification methods

● LCI communication backend layer
○ Plain message passing without tag matching supports (send/recv).

○ RDMA write with and without signal

○ Completion notification through queue polling.

● The backend layer interface are designed initially with libibverbs’ functionality

in mind.

Backend Interface

● Initialization/Finalization:
○ LCISD_server_init/fina
○ LCISD_endpoint_init/fina

● Memory registration:
○ LCISD_rma_reg/dereg

● Posting communications (not exhaustive):
○ two-sided

■ LCISD_post_send
■ LCISD_post_recv

○ one-sided
■ LCISD_post_put
■ LCISD_post_putImm

● Completion polling
○ LCISD_poll_cq

Mapping to libibverbs

● Initialization/Finalization:
○ LCISD_server_init/fina ibv_device
○ LCISD_endpoint_init/fina array of ibv_qp, ibv_srq

● Memory registration:
○ LCISD_rma_reg/dereg ibv_reg_mr/ibv_dereg_mr

● Posting communications:
○ two-sided

■ LCISD_post_send ibv_post_send (IBV_WR_SEND_WITH_IMM)
■ LCISD_post_recv ibv_post_srq_recv

○ one-sided
■ LCISD_post_put ibv_post_send (IBV_WR_RDMA_WRITE)
■ LCISD_post_putImm ibv_post_send (IBV_WR_RDMA_WRITE_WITH_IMM)

● Completion polling
○ LCISD_poll_cq ibv_poll_cq

General Scheme

● During initialization, the LCI upper layer
○ Register a large memory buffer.

○ Break it into small buffers (packets).

○ Pre-post thousands of receives.

● Inside the progress engine, the LCI upper layer
○ Check for completed receives (poll_cq) and react accordingly.

○ Re-post receives.

Mapping to UCX

● Initialization/Finalization:
○ LCISD_server_init/fina ucp_context_h
○ LCISD_endpoint_init/fina ucp_worker_h

● Memory registration:
○ LCISD_rma_reg/dereg ucp_mem_map/ucp_mem_unmap

● Posting communications:
○ two-sided

■ LCISD_post_send ucp_tag_send_nbx
■ LCISD_post_recv ucp_tag_recv_nbx

○ one-sided
■ LCISD_post_put ucp_put_nbx
■ LCISD_post_putImm ?

● Completion polling
○ LCISD_poll_cq ?

Mimic an RDMA write with signal

● UCP does not provide a “put with signal” primitive similar to

IBV_WR_RDMA_WRITE_WITH_IMM (in ibverbs) or fi_writedata (in

libfabric).

● We have to use a sequence of “put + fence + send” to mimic it.

● “fence + send” is called by the callback for ucp_put_nbx

Mimic a completion queue

● All UCP communication operations are posted using
UCP_OP_ATTR_FLAG_NO_IMM_CMPL except for ucp_put_nbx

● Pair each LCISI_endpoint (ucp_worker) with a queue
○ Each completion queue entry stores information of a completed operation, including

■ operation type
■ protocol number
■ message size
■ source/destination rank
■ pointer to packet
■ Communication poster

● CQ entries are:
○ Created a cq entry inside LCISD_post_* (function to post communications)
○ Pushed into CQ when related ucp operation is completed (in the function handler)
○ Passed to upper layer (LCII_progress) when polled

A Suspected Bug with UCP

● ucp_put_nbx with UCP_OP_ATTR_FLAG_NO_IMM_CMPL flag seems to

have a bug

○ Callback is invoked (local completion is fine)

○ Data is never delivered to remote

● Calling ucp_worker_flush_nbx or ucp_ep_flush_nbx does not help

● Current workaround:

○ If ucp_put_nbx completes immediately, explicitly use callback after

○ In ucp_put_nbx callback, do not push to CQ, instead push it in callback for send signal

○ CQ entry for put (sender side) is not pushed in put callback, but in send callback

Coarse-grained Blocking Locking Issue

● UCP has a more coarse-grained locking scheme than ibverbs.
○ In ibverbs, queue pairs, shared receive queues, completion queues have their own locks.

■ So posting sends, posting receives, and polling cq do not interfere with each other.
■ Typically

● posting sends are performed in worker threads
● posting receives and polling cq are performed in progress threads

○ However, UCP uses a single lock to protect a ucp_worker
■ So worker threads and progress threads interfere with each other.

● To make it worse, they are blocking locks.
○ The progress threads (usually of a small number) can be blocked waiting for worker threads

for a long time.

● We tried to use a try-lock wrapping all relevant UCP function calls to alleviate
this problem.

○ It only works in some cases.

Unmatched Receives when finalizing

● During finalization, there can still be unmatched pre-posted receive.

● UCX will throw an assertion error if there are unmatched receive

● ibverbs does not require all receive to be matched

● Currently finalization function is blank to circumvent the error
○ Possibly keep track of all posted receive and cancel them during finalization

○ Or allow UCP to automatically cancel unmatched receive in finalization

○ Or allow a configuration option to disable the requirement in finalization

Results

Experiment Setup

● Benchmarks on SDSC Expanse

○ 2× EPYC 7742 64 cores

○ Mellanox ConnectX-6

○ HDR InfiniBand (2x50 Gbps)

● Libraries used

○ Openmpi 4.1.1 with UCX 1.15

○ LCI with ibverbs

○ LCI with UCX 1.15

● One thread per core

○ Always have one dedicated progress thread in multithreaded case

Multithreaded Ping-pong Benchmark

Node 1
Node 2

Send/Recv

Node 1

● Small send window (only 1 send/recv per thread), large number of steps (1000)

Node 2

Node 1

…

Node 1
Node 2

Node 1
Node 2

Node 1

Workers
Workers

Workers
Workers

Workers

Node 1 Node 2

Results: Latency vs. Thread Number

● Latency as a function of thread number

○ Thread number: 1, 2, 4, 8, 16, 32, 64, 128

● Libraries compared:

○ LCI with UCX backend (without try-lock)

○ LCI with ibverbs backend

○ MPI with UCX backend

Discussion of Results

● LCI with ibverbs outperforms LCI with UCX and MPI with UCX

○ IB uses finer-grained locks

○ UCP progress, send/recv share the same lock

Discussion of Results

● Latency jump of LCI with ibverbs at 128 threads, 8kB message

○ Threads are spread in 2 different sockets

○ Only 1 progress thread, half of workers will go across sockets

○ need to experiment with numactl --interleave

Latency vs. Thread Number and Latency vs. Message Size

● As message size gets larger, performance gets similar

○ Hardware bandwidth becomes the bottleneck

Results: With vs. Without Try-lock

● LCI with UCX backend, with and without try-lock wrapping around all

UCP functions

● When unable to obtain the lock, directly return with LCI_ERR_RETRY

Discussion of Results

● Degrades performance for short messages, Improves performance for

medium messages, no change for long messages

● Hypothesis: try-lock makes progress function obtains the lock more often

○ Small message: progress function has little task

○ Medium message: progress function has more work

○ Long message: hardware becomes the bottleneck

Future Work

● Optimize current implementation

● Test with multiple progress threads/devices

● Implement and test the configuration without dedicated progress thread

● Implement the backend using lower-level API: UCT

● Implement LCI API using UCP directly and compare performance

Questions?

	Slide 1: An Implementation of LCI Network Backend Using UCX
	Slide 2: Introduction
	Slide 3: BSP v.s. AMTs
	Slide 4: New Communication Characteristics
	Slide 5: LCI Overview
	Slide 6: LCI: Current Status
	Slide 7: Design Principles
	Slide 8: Communication: Eager Protocol
	Slide 9: Communication: Rendezvous Protocol
	Slide 10: The LCI Communication backends
	Slide 11: Overview
	Slide 12: Backend Interface
	Slide 13: Mapping to libibverbs
	Slide 14: General Scheme
	Slide 15: Mapping to UCX
	Slide 16: Mimic an RDMA write with signal
	Slide 17: Mimic a completion queue
	Slide 18: A Suspected Bug with UCP
	Slide 19: Coarse-grained Blocking Locking Issue
	Slide 20: Unmatched Receives when finalizing
	Slide 21: Results
	Slide 22: Experiment Setup
	Slide 23: Multithreaded Ping-pong Benchmark
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Future Work
	Slide 31: Questions?

