
1

Use in-chip memory for RDMA operations
Roie Danino, UCX Team | UCF Conference, December 2023

UCX

2

UCX Library

Abstracts communication transports

Selects best available route(s) between endpoints

TCP, RDMA, Shared Memory, GPU

Zero-copy GPU memory transfers over RDMA

RDMA requires network support (IB or RoCE)

http://openucx.org

Unified Communication X

http://openucx.org/

3

InfiniBand MEMIC - Introduction

• Connect-X and BlueField devices contain a fast memory

chip called MEMIC – Memory Mapped to InterConnect

• The MEMIC can be used for RDMA operations, as well as

mapped to a process on the CPU

• Accessible over the network or the PCIe

4

•
Accessing host memory requires a round-trip of >350 nsec over
the PCIe bus when performing atomic operations

• Using local on-NIC memory avoids that round-trip

•
Reduce the latency of RDMA read and fetching atomic
operations

InfiniBand MEMIC

Motivation

5

InfiniBand MEMIC – Atomic Fetch & ADD

CPU

CPU

Host Memory

Host Memory

Host Memory

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

Host Memory

Calculate Add

Fetch & Add

6

InfiniBand MEMIC – Atomic Fetch & ADD

CPU

CPU

Host Memory

Host Memory

Host Memory

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC Memory (MEMIC)

Calculate Add

Fetch & Add

7

InfiniBand MEMIC – Atomic Fetch & ADD

CPU

CPU

Host Memory

Host Memory

Host Memory

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

MEMIC – Over the network

Fetch & Add

CPU

CPU

Host Memory

Host Memory

Host Memory

NIC

NIC

NIC

NICCalculate
Add

Fetch & Add

NIC

NIC

NIC

NIC

88

InfiniBand MEMIC
Usage / API

• A new memory type was introduced:
UCS_MEMORY_TYPE_RDMA

• MEMIC usage somewhat resembles GPU memory
usage, since in both cases it's a region in the process
address space that's accessible to the transport but not
to the CPU.

• It can be allocated just like any other memory type using
ucp_mem_map passing UCS_MEMORY_TYPE_RDMA
as a memory type parameter.

UCX

ucp_mem_map_params_t mem_map_params;
ucp_mem_h mem_h;
ucs_status_t status;

mem_map_params.field_mask =
UCP_MEM_MAP_PARAM_FIELD_MEMORY_TYPE;

mem_map_params.memory_type = UCS_MEMORY_TYPE_RDMA;

status = ucp_mem_map(context, &mem_map_params, &mem_h);

99

InfiniBand MEMIC
Usage / API

• Use the SHMEM_HINT_DEVICE_NIC_MEM hint for
allocating device memory.

• If MEMIC is not available, host memory is allocated
instead.

Open SHMEM

int main()
{
 int *buffer;

 shmem_init();

 buffer =
shmem_malloc_with_hints(sizeof(*buffer),

SHMEM_HINT_DEVICE_NIC_MEM);

 shmem_int_atomic_set(atomic_variable, 0,
my_id);

 shmem_free(buffer);

 shmem_finalize();

 return 0;
}

10

InfiniBand MEMIC – Implementation
Device memory allocation flow in UCX

1. Device memory is allocated using ibv_alloc_dm()

2. An address range is reserved using mmap, ensuring it is inaccessible from CPU:

address = mmap(NULL, dm_attr.length, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

3. The MEMIC region is registered using ibv_dm_reg_mr(). The address is 0, because device memory is zero-based:

ibv_reg_dm_mr(md->pd, dm, 0, length, access_flags | IBV_ACCESS_ZERO_BASED)

11

InfiniBand MEMIC – KSM Mapping

Problem:

• Device Memory is Zero Based – meaning its RDMA address is 0.

• Using 0 as the base address for all memory segments allocated on the IB device is
undesirable

Solution:

1. Use mmap to reserve an address range that will be dedicated for each device memory
allocation

2. Map 0 to the reserved address using KSM mechanism of the NIC

KSM enables indirect memory mapping in the NIC, for example:
mapping an existing remote key to a different custom RDMA address.

Key Value

0xfff2340 0x100

0xffab320 0

…

12

InfiniBand MEMIC – Benchmarks

ucx_perftest

• a single sender and a single receiver (one direction)

Benchmarks

• ucp_fadd – fetch & add – atomic add and returns the old value.

• ucp_add – atomic add – a posted operation.

Command Line Example:

$./ucx_perftest -t ucp_fadd -c 0 -m host,rdma -s 8 -O16 <other host>

Command Line Parameter Description

-t ucx_perftest test name: ucp_fadd, ucp_add

-c CPU affinity

-m Memory type: <sender, receiver>

-s Message size (bytes): either 4 or 8 for atomics.

-O Window size - number of uncompleted outstanding sends

P2P (ucx_perftest) Atomics Benchmarks

13

InfiniBand MEMIC - Results
P2P (ucx_perftest)

Units
Latency - µsec (Lower is better)
Message rate - Million ops / sec (Higher is better)

Hardware

2 nodes, each with:

2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz (15 cores each)

2x Connect-X 6 device

Software

UCX – v1.16.0

Window Size 1 16

Atomic Allocation Host MEMIC Diff Host MEMIC Diff

Fetch & Add
Latency 1.653 1.426 -14% 0.42 0.123 -71%

Message Rate 604999 701437 16% 2381344 8131869 241%

Atomic Add
Latency 0.627 0.299 -52% 0.588 0.3 -49%

Message Rate 1595301 3341689 109% 1699894 3328350 96%

1414

Contended Atomics Benchmark
OpenSHMEM Fetch & Add

void benchmark_fadd(int my_id, int npes, int* atomic_variable, unsigned long iterations)

{

 double begin, end;

 int i;

 static double rate = 0, sum_rate = 0, min_rate = 0, max_rate = 0;

 shmem_int_atomic_set(atomic_variable, 0, my_id);

 shmem_barrier_all();

 if (my_id != 0) {

 int value = 1;

 int old_value;

 begin = get_wall_time();

 for (i = 0; i < iterations; i++) {

 old_value = shmem_int_fadd(atomic_variable, value, 0);

 }

 end = get_wall_time();

 rate = ((double)iterations) / (end - begin);

 }

 shmem_barrier_all();

 shmem_double_sum_to_all(&sum_rate, &rate, 1, 0, 0, npes, pwrk, psync);

 shmem_double_max_to_all(&max_rate, &rate, 1, 0, 0, npes, pwrk, psync);

 /* Small hack to exclude root process from minimum calculation */

 if (my_id == 0) {

 rate = DBL_MAX;

 }

 shmem_double_min_to_all(&min_rate, &rate, 1, 0, 0, npes, pwrk, psync);

 print_operation_rate(my_id, "shmem_int_fadd", sum_rate/1e6, min_rate/1e6,

 max_rate/1e6, npes);

}

1. Root process allocates an atomic variable in either:
1. symmetric heap
2. global data segment
3. MEMIC

2. Its value is set to 0

3. Barrier

4. For each iteration:

• Fetch and add 1 to the shared atomic variable

5. Barrier

6. Collect results from all processes

15

InfiniBand MEMIC - Results
SHMEM Fetch & Add Benchmark – 15 Nodes

Total Message Rate – 15 Nodes
(Million ops/sec)

Message Rate Per Process – 15 Nodes
(Million ops/sec)

Hardware:15 Nodes, with

2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz (15 cores each)

2x Connect-X 6 device

Software: UCX – v1.16.0, OpenMPI – v5.0.0

16

InfiniBand MEMIC – Conclusions

1. Using NIC memory for atomics improves performance compared to host memory

2. It is noticeable that from a certain number of processes per NIC the improvement is less significant for each added
process.

3. Using more NICs preserves per-process performance when using NIC memory, as opposed to host memory.

17

Thanks

	Slide 1: Use in-chip memory for RDMA operations
	Slide 2: UCX Library
	Slide 3: InfiniBand MEMIC - Introduction
	Slide 4
	Slide 5: InfiniBand MEMIC – Atomic Fetch & ADD
	Slide 6: InfiniBand MEMIC – Atomic Fetch & ADD
	Slide 7: InfiniBand MEMIC – Atomic Fetch & ADD
	Slide 8: InfiniBand MEMIC Usage / API
	Slide 9: InfiniBand MEMIC Usage / API
	Slide 10: InfiniBand MEMIC – Implementation
	Slide 11: InfiniBand MEMIC – KSM Mapping
	Slide 12: InfiniBand MEMIC – Benchmarks
	Slide 13: InfiniBand MEMIC - Results
	Slide 14: Contended Atomics Benchmark
	Slide 15: InfiniBand MEMIC - Results
	Slide 16: InfiniBand MEMIC – Conclusions
	Slide 17

