NVIDIA

UCX BACKEND IN REALM

Hessam Mirsadeghi, Akshay Venkatesh, Jim Dinan, Sreeram Potluri, Nishan

hmirsadeghi@nvidia.com

REALM SUMMARY

> Asynchronous runtime for heterogeneous distributed memory machines

» Abstract machine model

» Processors (CPUs and GPUs)

cuNumeric Legate Legate Legate
» Memories JAX Pandas Sparse

Legate Core

> A key part of the LLR software stack (Legate/Legion/Realm)
Legion

Omniverse

> Transparent scalability (multi-GPU, multi-node)
Realm

https: //legion.stanford.edu/) AnviDIA.

https://legion.stanford.edu/

REALM SUMMARY

How is it different from MPI?

> Realm is an explicit representation runtime

me
o

> Parallel application expressed in terms of an operations graph e €2
> Nodes: tasks, data copies
» Edges: events representing ordering and dependences
» Generated dynamically at runtime
> Direct access to the graph
> Realm does all the synchronization and scheduling (not the programmer)

» Recognize and exploit operations overlap opportunities

3 “ANVIDIA.

REALM MULTI-NODE SUPPORT

Network Module

> Implemented by communication backends

> Active Message API

> Data copies

Network Module

> Control messages

Networking middleware layer that provides AM, RMA, and _
collective operations https: //gasnet.lbl.gov/)

v

PoC backend for Realm; not performant

4 <A NVIDIA.

https://gasnet.lbl.gov/

v

v

v

REALM UCX BACKEND

Why a UCX backend?
Latest hardware/software features (RDMA, GPUDirect, DPU)

» New NVIDIA networking innovations are exposed through UCX first

Best performance for both CPU and GPU point-to-point communications

> NVIDIA efforts for CUDA-aware communications are funneled through UCX

Fewer external dependencies, more unified software stack

> NVIDIA is the main contributor to UCX

Better support for future Realm requirements

> Elasticity, fault tolerance

5

<A NVIDIA.

REALM UCX BACKEND

Realm requirements

Active messages
Non-blocking operations
Communication progress must be explicit

» Nointernal progress threads
Multi-threaded support
Pre-registration of buffers
Efficient zero-copy transfer of pre-registered buffers
Efficient one-sided data transfer
Performant GPU-to-GPU communications
Fault tolerance
Elasticity

> Add/remove nodeson demand

> Dynamic creation/removal of end points

UCX features

UCP active message API
UCP provides non-blocking communication operations

Progress is done by explicitly calling ucp worker progress/()

UCP worker created with UCS_THREAD MODE MULTI
ucp mem map ()
Registration cache + zero-copy protocols

UCP one-sided put/get operations

GPU awareness, GPUDirect RDMA, topology awareness (GPU-NIC affinity)

Isolated error handling
Simply create a new UCP end point using remote worker/IP address

*» Client-server API facilitates this further

6

<A NVIDIA.

Bandwidth (GB/s)

memspeed bandwidth, UCX vs. GASNetEx

40

35

30

25

20

15

10

wu

PERFORMANCE RESULTS

2 Nodes

8 1B HDR 200 Gbps NICs per node

8 NVIDIAA100 GPUs per node

Realm memspeed bandwidth

38.09
36.3

Host-to-Host

B UCX EGEX

Memory type

28.81

A

6.79

Device-to-Device

7

4x higher GPU-to-GPU bandwidth with UCX

<ANVIDIA.

CHALLENGES AND
FEATURE GAPS

»

>

»

Realm: multi-GPU per process usage model

UCX: single-GPU per process usage model

Workaround

» Creating separate UCX contexts, one per GPU

>

>

» Caveat: extra end points = extra communication progress overhead

Set the corresponding GPU context before ucp init ()

Push/pop the corresponding GPU contexts

CHALLENGES

Multi-GPU support per process

r
1

End points per node: O(NG?)

Desired solution:

N = number of nodes
G = number of GPUs

Adding native multi-GPU per process support in UCX

End points per node: O(N)

per node

9

<A NVIDIA.

CHALLENGES

Coarse-grained UCP worker lock

Worker lock

Realm threads
Realmthreads / (/ = s _ccee—m—m——-- ﬁ ________

I I
: L/ ucp am data release
ucp am send nbx ¢: UCP worker I
- _ 1 UCS THREAD MODE MULTI
I \
b I ucp worker progress

Serialized by Realm
background work items

x Contentionbetween am_send submission,
receive progress, and bufferrelease @~ ioomTTotoooes .

Realm background
worker threads

x Significant performance drop if the thread
holding the lock is context-switched :

10 <A NVIDIA.

Coarse-grained UCP worker lock - Separate send recv workers

Realm threads g g

I
I

I

ucp am send nbx —
I

—

ucp worker progress

Serialized by Realm
background work items

i i Realm background
: i worker threads

CHALLENGES

Worker lock

UCP send worker
UCS_THREAD MODE MULTI

UCP recv worker

UCS THREAD MODE SERIALIZED

ucp worker progress

Queue

Release internal
UCP am buffer

ucp am data release

Realm threads % %

No contention between send and receive

No lock for the receive worker (serialized mode)

Small-scope queue lock

A

Serialized by Realm
background work items

i Realm background
i worker threads

11 <A NVIDIA.

UCX FEATURE GAPS FOR REALM

Providing Realm with what it needs to build its DMA graph

Realm DMA graph

> Nodes: memory regions

» Edges: communication channels

Node 0 Node1

Ndd

Nndd

NdoS

o
@w.\

(0
—~0

NdS

Minimal UCP feature
Disable copy-based protocols
Query if we can transfer from/to a given buffer

If so > zcopy transfer - add an edge in the graph

Ideal UCP feature
Query UCP about protocols details

> What are the possible protocols?
> What is the latency and bandwidth of each protocol?

Enforce a specific protocol per operation

Realm’s global vs. UCX’s local view of communications

12

<A NVIDIA.

UCX FEATURE GAPS FOR REALM

> Query UCP about the maximum single-fragment message size
» Avoid malloc, copy and reassemble on the receiving side

» Realm already does fragmentation

» Prioritized communications

» Enforce high/low priorities per operation

» Critical small controlmessages vs. large data transfers

> Enforcing order between active messages and RMA operations

» ucp_ put the payload followed by a header-only active message

13 <A NVIDIA.

NVIDIA.

hmirsadeghi@nvidia.com

w
>~
-
-
(C
L
—

Hessam Mirsadeghi

