
Hessam Mirsadeghi, Akshay Venkatesh, Jim Dinan, Sreeram Potluri, Nishank Chandawala

hmirsadeghi@nvidia.com

UCX BACKEND IN REALM



2

REALM SUMMARY

Asynchronous runtime for heterogeneous distributed memory machines

Abstract machine model

Processors (CPUs and GPUs)

Memories

A key part of the LLR software stack (Legate/Legion/Realm)

Transparent scalability (multi-GPU, multi-node)

2

Realm

Legion

Legate Core

cuNumeric
Legate 

Pandas

Legate 

Sparse

O
m

n
iv

e
rs

e

https://legion.stanford.edu/

Legate 

JAX

https://legion.stanford.edu/


3

REALM SUMMARY

Realm is an explicit representation runtime

Parallel application expressed in terms of an operations graph

Nodes: tasks, data copies

Edges: events representing ordering and dependences 

Generated dynamically at runtime

Direct access to the graph 

Realm does all the synchronization and scheduling (not the programmer)

Recognize and exploit operations overlap opportunities

How is it different from MPI?

3

Essential to lower runtime overheads
Communication cost in distributed memory machines

t1

t2 t3

c1

t5

t4

t6

t7

t8

e1 e2

e3

e4

e5

e6

e7



4

REALM MULTI-NODE SUPPORT

Implemented by communication backends

Active Message API

Data copies

Control messages

Network Module

4

Realm

Network Module

GASNetEx MPI UCX

Networking middleware layer that provides AM, RMA, and 
collective operations https://gasnet.lbl.gov/

PoC backend for Realm; not performant

https://gasnet.lbl.gov/


5

REALM UCX BACKEND

Latest hardware/software features (RDMA, GPUDirect, DPU)

New NVIDIA networking innovations are exposed through UCX first

Best performance for both CPU and GPU point-to-point communications

NVIDIA efforts for CUDA-aware communications are funneled through UCX

Fewer external dependencies, more unified software stack

NVIDIA is the main contributor to UCX

Better support for future Realm requirements

Elasticity, fault tolerance

Why a UCX backend?

5



6

REALM UCX BACKEND

Active messages

Non-blocking operations

Communication progress must be explicit

No internal progress threads

Multi-threaded support

Pre-registration of buffers

Efficient zero-copy transfer of pre-registered buffers

Efficient one-sided data transfer

Performant GPU-to-GPU communications

Fault tolerance

Elasticity

Add/remove nodes on demand

Dynamic creation/removal of end points

Realm requirements UCX features

UCP active message API

UCP provides non-blocking communication operations

Progress is done by explicitly calling ucp_worker_progress()

UCP worker created with UCS_THREAD_MODE_MULTI

ucp_mem_map()

Registration cache + zero-copy protocols

UCP one-sided put/get operations

GPU awareness, GPUDirect RDMA, topology awareness (GPU-NIC affinity)

Isolated error handling

Simply create a new UCP end point using remote worker/IP address

Client-server API facilitates this further



7

PERFORMANCE RESULTS
memspeed bandwidth, UCX vs. GASNetEx

4x higher GPU-to-GPU bandwidth with UCX

2 Nodes
8 IB HDR 200 Gbps NICs per node
8 NVIDIA A100 GPUs per node 



8

CHALLENGES AND 
FEATURE GAPS



9

CHALLENGES

Realm: multi-GPU per process usage model

UCX: single-GPU per process usage model

Workaround

Creating separate UCX contexts, one per GPU

Set the corresponding GPU context before ucp_init()

Push/pop the corresponding GPU contexts

Caveat: extra end points → extra communication progress overhead

Multi-GPU support per process

G
0

G
1

G
2

Node 0

G
0

G
1

G
2

Node 1

Desired solution:
Adding native multi-GPU per process support in UCX

G
0

G
1

G
2

Node 0

G
0

G
1

G
2

Node 1

End points per node: O(NG2)

N = number of nodes
G = number of GPUs per node

End points per node: O(N)



10

CHALLENGES
Coarse-grained UCP worker lock

UCP worker
UCS_THREAD_MODE_MULTI

ucp_worker_progress

Serialized by Realm 
background work items

Realm background
worker threads

ucp_am_send_nbx

Realm threads

Worker lock

Contention between am_send submission,
receive progress, and buffer release

Significant performance drop if the thread 
holding the lock is context-switched

ucp_am_data_release

Realm threads



11

CHALLENGES
Coarse-grained UCP worker lock – Separate send recv workers

ucp_am_send_nbx UCP send worker
UCS_THREAD_MODE_MULTI

Worker lock
Realm threads

ucp_worker_progress
UCP recv worker

UCS_THREAD_MODE_SERIALIZED
ucp_am_data_release

Serialized by Realm 
background work items

Realm background 
worker threads

Realm threads

Release internal 

UCP am buffer

Queue

Small-scope queue lock

No lock for the receive worker (serialized mode)

No contention between send and receive

ucp_worker_progress

Serialized by Realm 
background work items

Realm background 
worker threads



12

UCX FEATURE GAPS FOR REALM

1. Query UCP about protocols details

What are the possible protocols?

What is the latency and bandwidth of each protocol?

2. Enforce a specific protocol per operation

• Realm’s global vs. UCX’s local view of communications

Providing Realm with what it needs to build its DMA graph

12

1. Disable copy-based protocols

2. Query if we can transfer from/to a given buffer

• If so → zcopy transfer → add an edge in the graph

Minimal UCP feature

Ideal UCP feature
M1

M3

M2

M4

Node 0

C
P
U

G
P
U

Node1

C
P
U

G
P
U

Nodes: memory regions

Edges: communication channels

Realm DMA graph



13

UCX FEATURE GAPS FOR REALM

Query UCP about the maximum single-fragment message size

Avoid malloc, copy and reassemble on the receiving side

Realm already does fragmentation

Prioritized communications

Enforce high/low priorities per operation

Critical small control messages vs. large data transfers

Enforcing order between active messages and RMA operations

ucp_put the payload followed by a header-only active message



14

Thank You!

Hessam Mirsadeghi
hmirsadeghi@nvidia.com


