
Recent Advances in UCX for 
AMD GPUs

Edgar Gabriel

Arun Chandran



2 |

• New ROCm features in UCX 1.15

• v2 protocols status update

• Non-temporal buffer transfers on 

“Zen 3”/”Zen 4” architectures

• Summary

Outline



3 |

• ROCm/COPY: data transfer between host and device memory within a 

single process

• ROCm/IPC: data transfer between device memories of different processes 

on the same node

• GPUDirect RDMA for communication between processes on different 

nodes

• Memory type detection of ROCm memory

• Memory hooks for ROCm memory allocations

ROCm support in UCX



4 |

Open MPI

HPC Applications + Libraries

UCX

verbssockets

HIP

IB/RoCE 
HCA

Ethernet 
Adapter

Custom NIC GPU CPU

ROCnRDMA/ 
dmabuf

UCC

shm

pml/ucx osc/ucx coll/ucc

RCCL

Send/Recv

ROCm IPC

Put/Get CollectivesPack/Unpack

accelerator
/rocm

ROCm Aware Open MPI Software Stack with UCX and UCC

• Recommended 

software stack for 

InfiniBand and RoCE 

networks

• Most stable and best 

tested configuration



5 |

New ROCm Features in UCX 1.15

• Allows to overlap multiple 

stages in some protocols

• Potential to improve device-

to-host and host-to-device 

transfers

• Unified progress function for 

ROCm/copy and ROCm/ipc 

components

• Asynchronous ROCm/copy zero-copy operations

[1] OSU Benchmark Suite https://mvapich.cse.ohio-state.edu/benchmarks/    (BSD License). 

0

2000

4000

6000

8000

10000

12000

2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128
KB

256
KB

512
KB

1 MB 2 MB 4 MB

B
a

n
d

w
id

th
 [
M

B
/s

]
Message Size [bytes]

osu_bw1 for Device-to-Host transfers on MI250X

ucx 1.15.0 ucx 1.14.1

https://mvapich.cse.ohio-state.edu/benchmarks/


6 |

New ROCm Features in UCX 1.15

dma-buf support for ROCm devices

• dma-buf: Linux kernel subsystem providing a framework for sharing buffers across multiple 

devices

• For example, RDMA capable network adaptor accessing a GPU device buffer

• Long-term replacement for the ROCnRDMA kernel component

• ROCm release 5.6 introduced functionality to export a device buffer for dma-buf sharing



7 |

New ROCm Features in UCX 1.15

dma-buf support for ROCm devices

• Three components required to use dma-buf-based sharing for RDMA capable NICs

• ROCm version with support for exporting dma-buf handle 
(hsa_amd_portable_export_dmabuf())

• Version of the libibverbs that supports dma-buf-based memory registration 
(ibv_reg_dmabuf_mr())

• Linux kernel with certain features enabled (CONFIG_DMABUF_MOVE_NOTIFY, 

CONFIG_PCI_P2PDMA)



8 |

New ROCm Features in UCX 1.15

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

1 2 4 8 16 32 64 128 256

E
x
e

c
u

ti
o

n
 T

im
e

 [
u

s
]

Message Size [bytes]

osu_latency1 D D

kernel dmabuf

dma-buf vs. ROCnRDMA kernel component 

• 200Gb InfiniBand, mofed 5.9-0.5.6.0 

• MI210 GPUs

• UCX 1.15.0, Open MPI 5.0, osu benchmarks 7.2.0

[1] OSU Benchmark Suite https://mvapich.cse.ohio-state.edu/benchmarks/    (BSD License). 

0

5000

10000

15000

20000

25000

30000

1 KB 2 KB 4 KB 8 KB 16
KB

32
KB

64
KB

128
KB

256
KB

512
KB

1 MB 2 MB 4 MB

B
a

n
d

w
id

th
 [
M

B
/s

]

Message Size [bytes]

osu_bw1 D D

kernel dma-buf

https://mvapich.cse.ohio-state.edu/benchmarks/


9 |

New ROCm Features in UCX 1.15

• Dma-buf vs. kernel component: registration costs

• Ubuntu 22.04 with custom compiled Linux kernel 5.15

• ROCm 5.7.1

• mofed 5.9-0.5.6.0

0

500

1000

1500

2000

2500

3000

1 KB2 KB4 KB8 KB 16
KB

32
KB

64
KB

128
KB

256
KB

512
KB

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

E
x
e

c
u
ti
o

n
 T

im
e

 [
u

s
]

Message Size

export_dmabuf ibv_reg_dmabuf_mr ibv_reg_mr



10 |

New ROCm Features in UCX 1.15

• Setting device_id for AMD GPUs

• PCIe BDF for each GPU stored and can be used (e.g., for distance calculations)

• Easier identification in debugging output

• Added logic for GPU assignment of ROCm memory domains

• UCX uses internally the ROCm runtime layer functionality

• Runtime layer does not have the notion of ‘current device’ that has been set (e.g. hipSetDevice())

• Revamped logic allows to determine current device for some scenarios (interception of device allocation 

using memory hooks, HIP_VISIBLE_DEVICES)



11 |

v2 Protocols Status Update

• Intra-node correctness for ROCm device buffers  

• Inter-node correctness for ROCm device buffers 

• Intra-node performance for ROCm device buffers

• Point-to-point  

• Collectives ()  some overhead (20-50%) observed for short messages compared to ucx 1.15 for 

        some collective operations

• Inter-node performance for ROCm device buffers

• Point-to-point  ()

• RoCE   

• IB   still under investigation

• Collectives

• RoCE   

• IB    still under investigation



12 |

Non-Temporal Buffer 

Transfer



13 |

Hybrid MPI Applications on “Zen 3”/”Zen 4” 

• Processors based on AMD’s “Zen 3”/”Zen 4” 
architecture typically organize CPU cores into clusters 
of eight or more that share a common L3 
cache(CCD).

• Hybrid MPI applications often employ 'n-ranks X m-
threads' configuration

          n  <= Number of unified L3caches in system
          m >= Number of cores that share a common L3cache

For example: 16 ranks X 8 OpenMP threads combination 
on a single “Milan” node

• Non-temporal buffer transfers try to improve the data 
transfer speed/application performance for such 
hybrid workloads.

• Communication libraries use copy-in, copy-out 
(shared memory) or single copy mechanisms to move 
data between ranks.

• Only UCX PML is considered for optimization here: 
https://github.com/openucx/ucx/pull/9408



14 |

Handling UCX Copy-in, Copy-out (CICO)

• Non-temporal buffer transfer targets the hybrid 

workloads where sender and receiver do not share a 

common L3 cache (i.e., pinned to two different CCD) 

• Use two distinct mechanism in place of glibc’s memcpy 

for both copy-in and copy-out

• New Copy-in routine: 

• Copy sender’s buffer to receiver’s shared memory

• Use non-temporal store instead of normal store 

instructions while storing the data to shared 

memory destination

• New Copy-out routine: 

• Copy from shared memory to receiver’s buffer 

• Use ‘Loads with PREFETCHNTA’ instead of 

normal load instruction while loading from shared 

memory

sender receiver

sbuf rbuf

rshmem

rshmem 

mapped 

area
C

o
p
y
-in

C
o
p
y
-o

u
t



15 |

Handling UCX Copy-in, Copy-out (CICO)

• Advantages of using non-temporal load and store 

instruction

• Reduces data transfer latency by circumventing 

cache-to-cache data transfers, which tend to be 

slower, when ranks/processes are situated in 

different CCD

• Reduces the cache pollution, tends to keep only the 

application buffer in the caches

sender receiver

sbuf rbuf

rshmem

rshmem 

mapped 

area

C
o
p
y
-o

u
tC

o
p
y
-in



16 |

CICO osu_latency1 Benchmark Results (map-by l3cache)

0

2

4

6

8

10

12

14

16

18

20

22

L
a
te

n
c
y
(u

s
)

“Zen 3” - AMD EPYC 7763

original nt-buffer-transfer

“Zen 4” - AMD EPYC 9654

Gain: “Zen 3” up to 43 % @128 KB, ”Zen 4” upto 28 % @128 KB

[1] OSU Benchmark Suite https://mvapich.cse.ohio-state.edu/benchmarks/    (BSD License). 

https://mvapich.cse.ohio-state.edu/benchmarks/


17 |

UCX Single Copy (SCOPY) Optimization

• Only xpmem is considered as it is the only single 

copy mechanism that uses memcpy in userspace

• The new method uses ‘loads with PREFETCH 

NTA’ instead of normal load instructions while 

copying from the sender

• It reduces cache pollution in the receiver

• The cache line bouncing effect in the sender is 

reduced for sizes less than L3 cache size



18 |

SCOPY osu_latency1 Benchmark Results (map-by 

l3cache)

1

10

100

1000

10000

100000

L
a
te

n
c
y
(u

s
)

“Zen 3” - AMD EPYC 7763

original nt-buffer-transfer

1

10

100

1000

10000

100000
“Zen 4” - AMD EPYC 9654

Gain: “Zen 3” 5-7 % for larger sizes, “Zen 4”  4-5 % for larger sizes

[1] OSU Benchmark Suite https://mvapich.cse.ohio-state.edu/benchmarks/    (BSD License). 

https://mvapich.cse.ohio-state.edu/benchmarks/


19 |

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this 
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information.  Advanced 
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, 
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other 
products described herein.  No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.  Terms and limitations applicable to 
the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2023 Advanced Micro Devices, Inc.  All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.  Other product 
names used in this publication are for identification purposes only and may be trademarks of their respective companies.




	Slide 1: Recent Advances in UCX for AMD GPUs
	Slide 2
	Slide 3
	Slide 4
	Slide 5: New ROCm Features in UCX 1.15
	Slide 6: New ROCm Features in UCX 1.15
	Slide 7: New ROCm Features in UCX 1.15
	Slide 8: New ROCm Features in UCX 1.15
	Slide 9: New ROCm Features in UCX 1.15
	Slide 10: New ROCm Features in UCX 1.15
	Slide 11: v2 Protocols Status Update
	Slide 12: Non-Temporal Buffer Transfer
	Slide 13: Hybrid MPI Applications on “Zen 3”/”Zen 4” 
	Slide 14: Handling UCX Copy-in, Copy-out (CICO)
	Slide 15: Handling UCX Copy-in, Copy-out (CICO)
	Slide 16: CICO osu_latency1 Benchmark Results (map-by l3cache)
	Slide 17: UCX Single Copy (SCOPY) Optimization
	Slide 18: SCOPY osu_latency1 Benchmark Results (map-by l3cache)
	Slide 19
	Slide 20

