Extending
OpenSHMEM'’s Footprint for
Rust-on-RISCV, Python, Nim,

and HPX

Christopher Taylor
Tactical Computing Labs

tactcomplabs.com

Summary

—

—_— =

|

_— =
——

. Introductlon
e Rust

* Python

e Nim

e HPX

R Tactical
~¥(>omputing

I | | l.abs

Introduction

J_T — : — .

K Research &élopmentir

* HPC Software Specialization !

 Compilers |

| » Runtime Systems '
« Scientific Computing (Machine Learning, Al) %
* Modeling and Simulation (Structural Simulation Toolkit - SST) i
-+ Hardware Specialization)i

+ RISC-V
cv

Rust

Rust

. RusZ benSHM{ndings for Ru;

» Stonybrook, Rebecca Hassett, and Tony Curtis i

|

|* Successful Rust-on-RISCV bring up!

e
-+ Verifiled compiler has a self-hosting, multi-stage, bring ‘
Up process i

|
|
|

|

» Successfully deployed Rusty2 over O3S-UCX!

> _ | ~

Rust

. Suces fy impln&l/deployed to&iucl

* Infiniband support on RISCV works* (Connect X3, X4, |

| IPoIB)
11 |

e Hardware

|

|
|

ﬁ
|
* SiFive Hifive Unmatched Development Boards {

 Pine64 Star64 (8GB) Single Board Computers

___ _ . —

Python

Python

| —

- Codon is an Léompiler for Phon (Exaloop)

| Python programs compile to machine executable code! |
\ |

« Boehm’s garbage collection i

* Advanced developers can inline LLVM-IR into Python applications |

|
* Foreign Function Interface (FFI) only supports C (LLVM) |
I
* Pre-Mojo technology b

|

e 2 year open source licensing “age off” to Apache 2 License '
B OpenMP is supported natively in Codon i

« Users apply Python annotations (@) to loops

B e —— — . —

Python

—_— I

. Codon pdes supr fofStaticﬂ']‘ variables
Q\

* Variables are placed into the compiled programs data segment | ’
1

* Accessible to the Partitioned Global Address Space ,\

* OpenSHMEM integrates into Codon w/LLVM FFI v

S —

|

1 * Bindings provide basic support for OpenSHMEM operations

« 2 new types are introduced: Runtime and a ‘SymmetricArray[T]

I

R

Python

. Runtlme is a wrapper type for the standard _ néI\/IEM
runtime functionality

|* The type exists to provide scoped initialization and
finalization of the OpenSHMEM runtime using the Python |
‘with” expression 1

|

|

- derived from C++’s std::scoped_lock<T> type for
handllng mutex and locks.

1 * The idea of scoped management of the runtime is {

: = ' _,» E—

Python

| —

K “Syrﬁmetriglﬂ']‘ folds enSMEM operations into a container data y ’
|

I

'+ Supports

|
\
e |ocalized-slice]
|

* Copy, deepcopy
* put, get
| * max, min, sum, prod Ji

e all2all, broadcast)

I

R

Python

iﬁr{)m c;pensh import Runtime, SymmetricArray

with Runtime() as rt:

print("PE", rt.my_pe(), rt.n_pes())

a = SymmetricArray[int](10)

- print("symmetric array allocated"”, len(a))

| print("HERE")

Nim

Nim

| — _ : .

| . Nim isla ~10 year |5rogrammin Iauageﬁ

| e Syntax is very similar to Python (iterators, generators, etc)

 Compiles to C and C++ and (ECMAScript/Javascript, WASM, etc) |

 Boasts memory management features similar to Rust |

* Metaprogramming features

 Compile-time logic manipulates the compiler’s abstract syntax tree representation of the program.

 Macros can emit C/C++ code during compilation

I
| + Templates and generic support similar to C++ i
1 1
» Users can define ‘sets’ of types

« Consider a typedef that references a list of types or ‘std::variant<> from C++. SomeNumber

ARt - —

Nim

o All the fundamental OpenSHI\/IEI\/I funetlonallty is exposed
as a direct binding

* Convenience functions and datatypes are provided to
improve productivity and experiment with the language ‘*

—

-+ Symmetric Arrays and Symmetric Scalars

|
|
.+ Heavy use of the macro and template system {

* All output code targets the C code generator

~~ - N

Nim

J

1 . Users can create symmetrrc ‘variables (scalars) and arrays N|m S
. macro system generates the appropriate C code

o Static variables and sequences are compiled into the .data 1
segment of the compiled C executable, which places them into
the partitioned global address space

- » Nim symmetric variables and sequences, with a known-fixed
size, become static C arrays k

* Symmetric arrays with dynamic sizes are represented in C using |
~ pointers and are forwarded into shmem_malloc calls

- ‘ ~

Nim

|

—_—

|

|

~* put, get

. Sye Arrays .
* Arrays implement Nim’s Sequence interface
e Supports
* mMin, max, sum, prod

e broadcast, alltoall, reduce

-

Nim

| i?(nb‘ort ./S0s/s08
1 import ../sos/bindings
import std/macros

- # template function that handles initialization and finalization of ’ |

M # the OpenSHMEM runtime "
|
SymmetricMain: | |

’1’ var apple : symint # => symscalar]int] I
var orange : symsarray|[2, int] # => fixed sized symmetric array ‘
orange[0] = 1 |

| # dynamic allocation H
|

var a : symarrayint = newSymaArray[int]([1,2,3,4,5]) # => fixed size sequence ‘.
var b : symarrayint = newSymaArrayl[int](5) # => can accept a literal or variable j
11 let mrmin = minop.reduce(WORLD, b, a) # ‘minop is an enum of type ReductionKind’ 1

- echo(pe, ' ', mrmin))

let mmrmin = min(WORLD, b, a) # performs the same operation as above
echo(pe, ' ', mmrmin)

~

e ——— e — -~

HPX

HPX

_— e —

:‘STEHR ub (LSU CCT, Swiss SupercompuLt Ce

1

* Asynchronous Many-Task Runtime System
N |
|

e Implements ISO C++ standard for data parallelism and concurrency E\

=

\ (coawait), etc

* hpx::async => std::async, hpx::future => std::future, coroutines ‘
. i

i
| User-land thread library, 64K thread stack {

« HPX scales exceptionally well to large problem sizes

__ _ f -

HPX

. Addiiof‘eature *

 Uses APEX for performance counters and adaptive I
runtime features (Active Harmony) !

 Has a communication subsystem called “Parcelport”

i

!

|
* Distributed container type support for an |
. “Asynchronous Global Address Space” i

I

R

HPX

o
-
o
O |
g
5
O |
.ﬁ-w
N
=
-
q))
L
-Ul
A
@)
O |
3 |
-
C
=)
O
Q
—
@)
D)
0))
C
O |
U)t
\<\
N |
l'—|'|yl
q))
3

* Implemented using MPI, libfabric, sockets (tcp/ip, udp), |
LCl |

» GASNet & OpenSHMEM support added to HPX Parcelport

|

|

|
,u
« HPX can now “AGAS over PGAS”

- OpenSHMEM Processing Element (PE) maps to an HPX
_locality

_ S— . —

HPX

e = — — R e — il —_

« The GASNet Pareelport ereates a shared segment
(memory page) on each locality, for each locality ,

 Example: 4 localities; each locality has 4 shared
segments ‘

|

* [he shared segments operate as “communication lanes
where gets/puts can operate and minimize contention
- between localities

|

HPX

.
G)
j>\
Q’)
Z
D
— |
(Dly
Q
@)
—
<
q),
3 |
D
v
)]
Q ¢
Q |
OM |
)]
-
S
5
O
—+
e
D
=
@)
ﬁt
=
m!lh
r—I-Nr
ju‘
D |
jt
O
QJM
<
<< |

ifting of moving data out of the shared segments when
data arrives !

Ul

—_— =

* Implementation heavily inspired by Chapel’s GASNet i
support ‘

HPX

- — @ @ N ——

‘ . OpenSHMEM Parcelport operates in a similar fashion w/o using) Active messages

-+ HPX’s OpenSHMEM Parcelport creates a shared segment and a symmetric variable for each ’
locality |

« OpenSHMEM "put_signal is used to move data between localities in their exclusive segment |
on a remote locality |

!

|

» put_signal’, along with the symmetric variable for a locality, is used to indicate a |
communication event has occurred on the remote locality i

|

completes

|

* The remote locality uses an OpenSHMEM wait to detect when the expected put_signal ||
|
» “put_signal enables message passing over OpenSHMEM

. decomposes toa put + put atomic

-

HPX

Shared Segment 1 Loc1aI|ty

HPX

Locality O to Locality 1

Locality
1

Shared Segment 1

HPX

Locality 1 to Locality O

Locality
1

Thanks!

