
Extending  
OpenSHMEM’s Footprint for 
Rust-on-RISCV, Python, Nim,

and HPX

tactcomplabs.com

Christopher Taylor 
Tactical Computing Labs

Summary

• Introduction

• Rust

• Python

• Nim

• HPX

Introduction

• Research & Development Firm

• HPC Software Specialization

• Compilers

• Runtime Systems

• Scientific Computing (Machine Learning, AI)

• Modeling and Simulation (Structural Simulation Toolkit - SST)

• Hardware Specialization

• RISC-V

Rust

Rust

• Rusty2 - OpenSHMEM bindings for Rust

• Stonybrook, Rebecca Hassett, and Tony Curtis

• Successful Rust-on-RISCV bring up!

• Verified compiler has a self-hosting, multi-stage, bring
up process

• Successfully deployed Rusty2 over O3S-UCX!

Rust

• Successfully implemented/deployed to a Slurm cluster

• Infiniband support on RISCV works* (Connect X3, X4,
IPoIB)

• Hardware

• SiFive Hifive Unmatched Development Boards

• Pine64 Star64 (8GB) Single Board Computers

Python

Python

• Codon is an LLVM compiler for Python (Exaloop)

• Python programs compile to machine executable code!

• Boehm’s garbage collection

• Advanced developers can inline LLVM-IR into Python applications

• Foreign Function Interface (FFI) only supports C (LLVM)

• Pre-Mojo technology

• 2 year open source licensing “age off” to Apache 2 License

• OpenMP is supported natively in Codon

• Users apply Python annotations (@) to loops

Python

• Codon provides support for `Static[T]` variables

• Variables are placed into the compiled programs data segment

• Accessible to the Partitioned Global Address Space

• OpenSHMEM integrates into Codon w/LLVM FFI

• Bindings provide basic support for OpenSHMEM operations

• 2 new types are introduced: Runtime and a `SymmetricArray[T]`

Python

• Runtime is a wrapper type for the standard OpenSHMEM
runtime functionality

• The type exists to provide scoped initialization and
finalization of the OpenSHMEM runtime using the Python
`with` expression

• The idea of scoped management of the runtime is
derived from C++’s std::scoped_lock<T> type for
handling mutex and locks.

Python

• `SymmetricArray[T]` folds OpenSHMEM operations into a container data type

• Supports

• localized-slice

• copy, deepcopy

• put, get

• max, min, sum, prod

• all2all, broadcast

Python

from openshmem import Runtime, SymmetricArray 
 
with Runtime() as rt: 
 
 print("PE", rt.my_pe(), rt.n_pes()) 
 
 a = SymmetricArray[int](10) 
 
 print("symmetric array allocated", len(a)) 
 
 print("HERE")

Nim

Nim

• Nim is a ~10 year old programming language

• Syntax is very similar to Python (iterators, generators, etc)

• Compiles to C and C++ and (ECMAScript/Javascript, WASM, etc)

• Boasts memory management features similar to Rust

• Metaprogramming features

• Compile-time logic manipulates the compiler’s abstract syntax tree representation of the program.

• Macros can emit C/C++ code during compilation

• Templates and generic support similar to C++

• Users can define ‘sets’ of types

• Consider a `typedef` that references a list of types or `std::variant<>` from C++. `SomeNumber`

Nim

• All the fundamental OpenSHMEM functionality is exposed
as a direct binding

• Convenience functions and datatypes are provided to
improve productivity and experiment with the language

• Symmetric Arrays and Symmetric Scalars

• Heavy use of the macro and template system

• All output code targets the C code generator

Nim

• Users can create symmetric variables (scalars) and arrays; Nim’s
macro system generates the appropriate C code

• Static variables and sequences are compiled into the .data
segment of the compiled C executable, which places them into
the partitioned global address space

• Nim symmetric variables and sequences, with a known-fixed
size, become static C arrays

• Symmetric arrays with dynamic sizes are represented in C using
pointers and are forwarded into shmem_malloc calls

Nim

• Symmetric Arrays

• Arrays implement Nim’s Sequence interface

• Supports

• min, max, sum, prod

• broadcast, alltoall, reduce

• put, get

Nim

import ../sos/sos 
import ../sos/bindings 
import std/macros

template function that handles initialization and finalization of 
the OpenSHMEM runtime 
# 
SymmetricMain: 
 
 var apple : symint # => symscalar[int] 
 var orange : symsarray[2, int] # => fixed sized symmetric array 
 orange[0] = 1

 # dynamic allocation 
 # 
 var a : symarrayint = newSymArray[int]([1,2,3,4,5]) # => fixed size sequence 
 var b : symarrayint = newSymArray[int](5) # => can accept a literal or variable 
 
 let mrmin = minop.reduce(WORLD, b, a) # `minop` is an enum of type `ReductionKind` 
 echo(pe, ' ', mrmin) 
 
 let mmrmin = min(WORLD, b, a) # performs the same operation as above 
 echo(pe, ' ', mmrmin)

HPX

HPX

• STE||AR Group (LSU CCT, Swiss Supercomputing Center, etc)

• Asynchronous Many-Task Runtime System

• Implements ISO C++ standard for data parallelism and concurrency

• hpx::async => std::async, hpx::future => std::future, coroutines
(coawait), etc

• User-land thread library, 64K thread stack

• HPX scales exceptionally well to large problem sizes

HPX

• Additional features

• Uses APEX for performance counters and adaptive
runtime features (Active Harmony)

• Has a communication subsystem called “Parcelport”

• Distributed container type support for an
“Asynchronous Global Address Space”

HPX

• Parcelport is the HPX communication subsystem

• Implemented using MPI, libfabric, sockets (tcp/ip, udp),
LCI

• GASNet & OpenSHMEM support added to HPX Parcelport

• HPX can now “AGAS over PGAS”

• OpenSHMEM Processing Element (PE) maps to an HPX
locality

HPX

• The GASNet Parcelport creates a shared segment
(memory page) on each locality, for each locality

• Example: 4 localities; each locality has 4 shared
segments

• The shared segments operate as “communication lanes”
where gets/puts can operate and minimize contention
between localities

HPX

• GASNet’s active message support performs the heavy
lifting of moving data out of the shared segments when
data arrives

• Implementation heavily inspired by Chapel’s GASNet
support

HPX

• OpenSHMEM Parcelport operates in a similar fashion w/o using Active messages

• HPX’s OpenSHMEM Parcelport creates a shared segment and a symmetric variable for each
locality

• OpenSHMEM `put_signal` is used to move data between localities in their exclusive segment
on a remote locality

• `put_signal`, along with the symmetric variable for a locality, is used to indicate a
communication event has occurred on the remote locality

• The remote locality uses an OpenSHMEM `wait` to detect when the expected `put_signal`
completes

• `put_signal` enables message passing over OpenSHMEM

• decomposes to a `put` + `put_atomic`

HPX

Locality 
0

Locality 
1

Shared Segment 0

Shared Segment 1

HPX

Locality 
0

Locality 
1

Shared Segment 0

Shared Segment 1

Locality 0 to Locality 1

HPX

Locality 
1

Locality 
0

Shared Segment 0

Shared Segment 1

Locality 1 to Locality 0

Thanks!

