
1

Symmetric Remote Keys
UCF 2023 – Dec 7

Thomas Vegas (UCX team)

Artem Polyakov (Arch team)

2

OpenSHMEM

• OpenSHMEM is

• an implementation of Partitioned Global Address Space (PGAS) parallel programming model for HPC

• a standard API targeting portable and uniformly predictable results of OpenSHMEM programs

• comprised of Processing Elements (PE) - typically OS processes - communicating with each other using OpenSHMEM
primitives

• OpenSHMEM memory model

• An OpenSHMEM program consists of data objects that are

private to each PE and data objects that are remotely

accessible by all PEs

• Remotely accessible data objects are called Symmetric Data

Objects.

• For symmetric data, each object is represented on all PEs

with same name, type, and size

• Symmetric data is remotely accessed via OpenSHMEM API

• Symmetric data objects are referenced in OpenSHMEM

operations through the Symmetric Address – a pointer to the

local object that corresponds to the desired remotely

accessible object.

• Symmetric objects are grouped in SHMEM Segments

3

Symmetric Remote Keys
OpenSHMEM as first user

• OpenSHMEM

• Shared memory over multiple processes on multiple nodes

• Uses UCX, UCP API to perform data transfers / atomic operations

• UCX

• Communication framework for high-bandwidth and low-latency network

• Goal – reduce the number of used remote keys

• Implementing symmetric remote keys in UCX

• Extend Infiniband memory registration

4

OSHMEM: Manipulates segments

• OSHMEM PE: Processing Element

• One or many PE per node (PPN)

• Each PE (rank) creates the exact same list of segments

• A segment is a contiguous memory region

• Created simultaneously by all PEs

• Typical 3-5 segments

• SHMEM allocation functions are operating within the segments

• Each segment is registered to be remotely accessible

• Each PE can access every remote segment in the application

• Each PE has remote key for every segment of all other PEs

List of PE

Seg0: PEx_rkey0

Seg1: PEx_rkey1

Seg2: PEx_rkey2

Seg3: PEx_rkey3

Seg0: PE1_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE0_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

5

UCP Remote key
On a given cluster

• For OSHMEM use case

• RDMA network is used for inter-node communication (i.e. InfiniBand)

• Shared memory is utilized for intra-node communications

• HPC nodes are typically homogeneous (hw, network)

• UCP Remote key

• Contains one memory key per memory domain

• ucp_rkey_h descriptor has

• A list of remote keys for each transport

• But also:

• Memory domain contained

• Remote configuration identifier

• Endpoint configuration index

6

Suggestion

• For OSHMEM use case

• RDMA network is used for inter-node communication (i.e. InfiniBand)

• Shared memory is utilized for intra-node communications

• HPC nodes are typically homogeneous (hw, network)

• Avoid storing extra information for homogeneous systems

• Deduplication meta-information related to

• memory domains

• Endpoint configurations

• Reduce the number of unique inter-node keys

• Demonstrated for InfiniBand via a capability to reduce the randomization of remote keys

• This allows to deduplicate at IB transport level

• Shared memory keys

• Do not scale with the number of nodes and do not require deduplication

7

Introduce deduplication procedure 1/2
UCX: UCP new API

• API Change: Added new flag for ucp_ucp_mem_map()

• UCP_MEM_MAP_SYMMETRIC_RKEY

• Indicates that the memory is allocated in environments with symmetric memory

• There is a potential benefit from deduplication

• UCP is making the best effort to support

• Non-supporting transport work as usual

• New API, works with every transport

• ucs_status_t ucp_rkey_compare(ucp_worker_h worker, ucp_rkey_h rkey1, ucp_rkey_h rkey2,

const ucp_rkey_compare_params_t *params, int *result);

• OSHMEM procedure

1. Receive and unpack rkey

2. Compare all rkey parameters with existing received and unpacked keys in the bucket

3. If identical: discard latest, reuse previous reference ucp_rkey_h

4. Else if different: add to store bucket, use current ucp_rkey_h

• For OSHMEM transport keys

• Shared memory – not supported

• Infiniband – is supported

8

Introduce deduplication procedure 2/2
UCX: UCP new API

• API Change: Added new flag for ucp_ucp_mem_map()

• UCP_MEM_MAP_SYMMETRIC_RKEY

• Indicates that the memory is allocated in environments with symmetric memory

• There is a potential benefit from deduplication

• UCP is making the best effort to support

• Non-supporting transport work as usual

• New API, works with every transport

• ucs_status_t ucp_rkey_compare(ucp_worker_h worker, ucp_rkey_h rkey1, ucp_rkey_h rkey2,

const ucp_rkey_compare_params_t *params, int *result);

• “result” field is introduced to optimize the deduplication procedure

• Possible values (assigned at UCP/UCT discretion):

• “ -1” => rkey1 is “less” than rkey2

• “+1” => rkey1 is “greater” than rkey2

• “ 0” => rkey1 == rkey2

• Allows applying binary search during deduplication procedure

• => log2(n) search time.

9

Allocation Symmetric remote keys

List

of PEs

Seg0: PEz_rkey0

Seg1: PEx_rkey1

Seg2: PEx_rkey2

Seg3: PEx_rkey3

Seg0: PEy_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PEx_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE2_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE1_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE0_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3 Local PE

Remote PE

PEn

List

of PEs

Seg0

Seg1

Seg2

Seg3

Seg0

Seg1

Seg2

Seg3

Seg0: PEx_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0

Seg1

Seg2

Seg3

Seg0

Seg1

Seg2

Seg3

Seg0: PE0_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

PEn

RKey0

RKey1

RKey2

RKey3

RKey4

RKey5

RKey6

10

Allocation Symmetric remote keys (ideal case)

List

of PEs

Seg0: PEz_rkey0

Seg1: PEx_rkey1

Seg2: PEx_rkey2

Seg3: PEx_rkey3

Seg0: PEy_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PEx_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE2_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE1_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0: PE0_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3 Local PE

Remote PE

PEn

List

of PEs

Seg0

Seg1

Seg2

Seg3

Seg0

Seg1

Seg2

Seg3

Seg0: PEx_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

Seg0

Seg1

Seg2

Seg3

Seg0

Seg1

Seg2

Seg3

Seg0: PE0_rkey0

Seg1: PE0_rkey1

Seg2: PE0_rkey2

Seg3: PE0_rkey3

PEn

RKey0

RKey1

RKey2

RKey3

11

Notes
UCX: UCP new API

• Memory registration performance, wrt allocation scheme

• ppn 48, cx6, 30 segments: 4-7 ms per segment creation

• ppn 48, cx6, 2 segments (default): 1-2 ms per segment creation

• ppn 28, cx6, 30 segments: 2-3 ms per segment creation, no different with standard allocation mode

• Deduplication (log(n))

• 3 nodes: 32 segments, 48 ppn

• Intra-node, keys are stored: not deduplicated

• Inter-node, at least two other nodes to trigger deduplication

12

	Slide 1: Symmetric Remote Keys
	Slide 2: OpenSHMEM
	Slide 3: Symmetric Remote Keys
	Slide 4: OSHMEM: Manipulates segments
	Slide 5: UCP Remote key
	Slide 6: Suggestion
	Slide 7: Introduce deduplication procedure 1/2
	Slide 8: Introduce deduplication procedure 2/2
	Slide 9: Allocation Symmetric remote keys
	Slide 10: Allocation Symmetric remote keys (ideal case)
	Slide 11: Notes
	Slide 12

