< NVIDIA.

Dynamic Transport Selection

Shachar Hasson, UCX | UCF Conference Dec 2023




» Problem Statement

 Design Goals

» Solution

e Benchmarks

2  <ANVIDIA. I



Problem statement

To optimize latency and message rate in large clusters, we aim to identify heavily used EPs and switch them to RC
transport.

Due to limited RC resources, we'd like to prioritize selecting RC for the most active EPs.

Support varying traffic pattern and switch between RC and DC if needed.

3 NVIDIA



Design Goals

Avoid frequent switching

Don’t impact fast path performance
Low memory usage

Keep protocols semantics

There are some tradeoffs between the different goals.

For example, two methods for EP activity tracking:
Add extra bits in UCP_EP to store EP id, which will be used to access EP array (better for performance).
Use a hash table where the EP address is used as a key, only for highly used endpoints (better for memory)

4 NVIDIA



Solution overview

Monitoring/Selection - Identify highly used connections by packet count.
Negotiation - Reach network agreement regarding which connections will be switched.

Switching - How to switch transport under traffic.

5 NVIDIA



Monitoring And Selection

Evaluate each connection by counting how much data is sent through it.
Add a counter per connection.
A counter is incremented per each send operation.
ldentify the subset of connections with the largest count values.
Perform transport switch for the selected subset.

2 primary issues arise from this solution:

Storing a counter for each connection is not scalable.

Adding an update operation in fast path will impact performance.

Due to memory scalability issues and fast path overhead, another approach is needed.

6 NVIDIA



Monitoring And Selection

Counting can be performed using several methods:

When a send operation starts.
When a send operation completes.

UCT/UCP
UCT
CQE Moderation can be utilized to coalesce several send operations into a single “counter update” operation.
Lack of such coalescing in non-IB transports.
Coalesce size is inconsistent between transports.
UCP

Simpler implementation.
The lack of coalesce capability affects performance.

Counting is done in UCP layer but toggled on and off alternately.
An extra branch instruction is still needed on fast path per each send operation.
It can be solved by modifying an existing branch operand value.

/ NVIDIA



Monitoring And Selection

Maintain LRU structure which tracks recently used EPs and updates per each send completion.

Statistically if we take a snapshot, highly active EPs will most likely be on the top.

To prevent momentary peaks from influencing the selection decision, multiple samples over time are needed.

Periodically sample LRU results and aggregate them into an (ED) score table with a single entry per

connection.
This stage is required to filter out noise

The list of most active connections is defined by the subset of connections with the highest ED scores

8 NVIDIA



Monitoring And Selection

FIFO based approach which considers the most recent LRU samples.
High memory consumption.

Hit counter based score.
No need to maintain a FIFO.
Extra stage adds complexity.

Reward heavily used connections by raising their score each time they are sampled.
ldle connections score is lowered, as no new data are sent.
Older connections will be harder to replace, as we give weight to history when calculating score.

Update equation: current_score = A * current_score + B
A - decay coefficient.

B - new sample value.

9 NVIDIA



Monitoring And Selection

Track and prioritize connections according to their usage.
Generic UCS data structure, independent of particular transports.

Avoid storing data per connection, by only tracking a small number of connections.
Total memory footprint is constant, rather than O(n) of total EPs number.

Promotion - transition of a connection to a “highly used” connection.
Demotion - the opposite of promotion.

Maintain a connection table which corresponds to highly used connections.
On each “progress” operation, the LRU cache is flushed into the table to produce updated scores.

usage_tracker_touch
Touches the connection entry for each new packet send operation.

usage_tracker_progress
Updates the connection table with new scores and adjusts it if required.

Called from UCX periodic callback context.

Callback notification of promotion and demotion events.

Asymmetric bidirectional connections can be updated according to remote side.

10 NVIDIA.



Fast Path

Monitoring And Selection

CQE

Msgl

Msg?2

Msg3

LRU

— » | EP1

EP2

EP3

EP4

— " EPS

Every K seconds

»-

ED
Table

EP1:7

EP2:12

EP3:5

EP4:6

EP5:11

EP1:7

P2:12

EP6: 6

EP4:6

Filter, Sort, diff threshold

2

RC List

EP2:14

EP1:7

EP4:6

EP3:5

EP2:13

EP5:11

EP1:7

EP4:6

EP3:5

EP5:11

10

11

11

NVIDIA



Transport Negotiation Protocol

As each EP involves 2 nodes, they may have different views regarding traffic amount relative to other EPs.

Furthermore, a node has no knowledge of its neighbors' RC capacity (a remote node may have exhausted its RC
resources)

Thus, a new protocol is needed to ensure all nodes agree on EPs transports to be used

The most efficient allocation would require looking at the whole cluster "from above"” and having full information about
all connections

As it is not practical, a "close enough” approximation is made instead.

The new protocol must ensure consensus and avoid infinite loops caused by cyclic switching patterns.

12 NVIDIA.



Max RC =15

Transport Negotiation Protocol

High Level Flow

Node A Node B Node C

I I
RC=15 [ :
usage_tracker.promotel) : |
Promotion #1 |
I
Ack . :

g RC=14

RC =15

RC=15

Node D

Promotion #2

I usage_tracker.promotel() RC=15

Ack

Demotion |

13 <A NVIDIA I



Max RC =15

Transport Negotiation Protocol

Request Denied

Node A Node B Node C

I I
RC=15 [ :
usage_tracker.promotel) : |
Promotion #1 |
I
Ack . :

g RC=14

RC =15

RC=15 ¢

|
|
|

Demotion |

Promotion #2

I usage_tracker.promotel() RC=15

Node D

Nack

RC=14

14 <ANVIDIA. I



Message 1

Message 2

Message 3

Message 4

---------------*

---------------*

---------------*

---------------*

Sender

L s A

AM

Message 1

WIreup_ep

| PN |

TAG

Message 2

Wireup_ep

Lane3

PUT

Message 4

Pending Queue

wireup_ep

Switching

req

connected

connected

connected

connected

Recelver

reply

Lane1

Lane2

Lane3

Lane4

15

NVIDIA



Switching

The process of replacing the set of active connections, under traffic.
Order should be guaranteed for active message transports.

Reuse UCT endpoints if possible.

A new UCT APl is implemented to determine whether a lane is connected to a remote side described by a remote address.

Pending requests are handled by the new connection.

Outstanding requests are flushed.

Multi-fragment requests reset the UCP protocol.

16 NVIDIA.



Message 2

Message 3

Message 4

Switching

Reconfiguration Scenario

Sender

Message 1

wireup_ep

Message 2

Pending Queue

[ wireup_ep

wireup_ep

AM

Get

Colepeeked

Recelver

reply

AM

Message 5

17 <ANVIDIA. I



Benchmarks

osu_mbw_mr
Few highly active EPs and a lot of unused EPs
Verifies switching of the correct EPs
osu_alltoall

A symmetric scenario where all EPs send a lot of data
Checks avoidance of excessive switching

osSu _mbw mr
An extra send operation was added to all unused EPs
Better simulation of real use scenarios

18 NVIDIA.



< NVIDIA.




	Slide 1: Dynamic Transport Selection
	Slide 2
	Slide 3:  Problem statement
	Slide 4: Design Goals
	Slide 5: Solution overview
	Slide 6: Monitoring And Selection
	Slide 7: Monitoring And Selection
	Slide 8: Monitoring And Selection
	Slide 9: Monitoring And Selection
	Slide 10: Monitoring And Selection
	Slide 11: Monitoring And Selection
	Slide 12: Transport Negotiation Protocol
	Slide 13: Transport Negotiation Protocol
	Slide 14: Transport Negotiation Protocol
	Slide 15: Switching
	Slide 16: Switching
	Slide 17: Switching
	Slide 18: Benchmarks
	Slide 19

