
Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

1/19

Enhanced Deferment for Aggregation Contexts in
OpenSHMEM

Aaron Welch, Oscar Hernandez, Stephen Poole

Presented by: Aaron Welch (dawelch@uh.edu)

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

2/19

The Problem

OpenSHMEM provides a simple PGAS interface for low
latency SPMD/RDMA communication that can be
efficiently mapped to the hardware
Some common access patterns can easily congest
modern networks with an excessive amount of small
messages when implemented with it
Substantial rewrites of existing code is undesirable,
costly, and carries a cognitive burden
An extension for “aggregation contexts” was introduced
to address this issue by deferring messages to send in
bulk later for up to 65x improvement, but this alone is
insufficient for all cases
We need to address dependencies between
communication operations and use of their results
within application code

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

3/19

Bale and Conveyors

The bale effort1 exists to identify key challenges and demonstrate
methods that can be used to address them

Bale provides an aggregation library called conveyors along with a
series of applications exhibiting key irregular access patterns
implemented either with them or traditional OpenSHMEM atomics,
gets, and puts (AGP)

Histogram
Indexgather
Sparse Matrix Transpose

Triangle Counting
Toposort
Etc

Conveyors are like stateful message queues with operations to
push and pull messages to/from them

Implicitly employ two-sided semantics

1https://github.com/jdevinney/bale

https://github.com/jdevinney/bale

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

4/19

OpenSHMEM Aggregation Contexts Extension

Expands on communication contexts from the 1.4
specification (intended for thread isolation)

Used to modify existing communication operations to
execute with respect to a given context

Add additional option SHMEM_CTX_AGGREGATE for context
creation to request conveyor aggregation

Operations executed on such contexts gain relaxed
completion semantics

Remote completion is only guaranteed upon calling
quiet for the context (input buffers reusable)

Internally, information about an operation of a given
size is packed into fixed size structures

Progress is internally managed

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

5/19

Sparse Matrix Transpose

Computes the transpose of a sparse matrix in compressed sparse
row (CSR) format (seen above 1)
Difficult to aggregate due to synchronisation as PEs need when determing
locations for writing data

First phase uses a histogram to determine the number of nonzeroes in each
column

Need new row offsets for storing the results of the transpose Aᵀ

Second phase acquires the new location Aᵀ
j,i for each nonzero Ai,j and

writes it to the destination PE
1

Two Sparsities Are Better Than One: Unlocking the Performance Benefits of Sparse-Sparse Networks - Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/The-Compressed-Sparse-Row-CSR-format-for-representing-sparse-matrices-provides-a_fig1_357418189
[accessed 6 Dec, 2023]

https://www.researchgate.net/figure/The-Compressed-Sparse-Row-CSR-format-for-representing-sparse-matrices-provides-a_fig1_357418189

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

6/19

Sparse Matrix Transpose Phase 1

f o r (i n t 6 4 _ t i = 0 ; i < A−>lnnz ; i ++) {
shmem_atomic_inc (&shtmp [A−>lnonzero [i]

/ npes] , A−>lnonzero [i] %
npes) ;

}
shmem_barr ier_al l () ;

OpenSHMEM AGP

->

f o r (i n t 6 4 _ t i = 0 ; i < A−>lnnz ; i ++) {
shmem_ctx_int64_atomic_inc (ctx ,

&shtmp [A−>lnonzero [i] /
npes] , A−>lnonzero [i] %
npes) ;

}
shmem_ctx_quiet (c t x) ;
shmem_barr ier_al l () ;

Aggregation Contexts

Histogram pattern to get the column counts of A

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

7/19

Histogram Performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 8 16 32 56

P
e
rf

o
rm

a
n
c
e
 R

e
la

ti
v
e
 t
o
 A

G
P

Processes per Node

Conveyors Contexts

Run with weak scaling on all 32 nodes of the HPC Advisory Council’s Iris system using OpenSHMEM
from OpenMPI 4.1.3 and NVIDIA ConnectX-6 HDR100 100 Gbit/s InfiniBand adapters

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

8/19

Sparse Matrix Transpose Phase 2

/ / r e d i s t r i b u t e the nonzeros
f o r (i n t 6 4 _ t row = 0; row < A−>lnumrows ; row++) {

f o r (i n t 6 4 _ t j = A−>l o f f s e t [row] ; j <
A−>l o f f s e t [row + 1] ; j ++) {

i n t 6 4 _ t pos =
shmem_atomic_fetch_add(&shtmp [A−>lnonzero [j]
/ npes] , npes , A−>lnonzero [j] %
npes) ;

shmem_int64_p(&(∗At)−>nonzero [pos / npes] , row
∗ npes + me, pos % npes) ;

i f (A−>value != NULL) {
shmem_double_p(&(∗At)−>value [pos / npes] ,

A−>l v a l u e [j] , pos % npes) ;
}

}
}
shmem_barr ier_al l () ;

OpenSHMEM AGP

->

/ / r e d i s t r i b u t e the nonzeros
i n t 6 4 _ t ∗pos [A−>lnumrows] ;
f o r (i n t 6 4 _ t row = 0; row < A−>lnumrows ; row++) {

pos [row] = (i n t 6 4 _ t ∗) mal loc ((A−>l o f f s e t [row + 1] −
A−>l o f f s e t [row]) ∗ s i z e o f (i n t 6 4 _ t)) ;

i f (pos [row] == NULL) {
FAIL () ;

}
f o r (i n t 6 4 _ t j = 0 , co l = A−>l o f f s e t [row] ; co l + j

< A−>l o f f s e t [row + 1] ; j ++) {
shmem_ctx_int64_atomic_fetch_add_nbi (ctx ,

&pos [row] [j] , &shtmp [A−>lnonzero [co l
+ j] / npes] , npes , A−>lnonzero [co l
+ j] % npes) ;

}
}
shmem_ctx_quiet (c t x) ;
shmem_barr ier_al l () ;
f o r (i n t 6 4 _ t row = 0; row < A−>lnumrows ; row++) {

f o r (i n t 6 4 _ t j = 0 , co l = A−>l o f f s e t [row] ; co l + j
< A−>l o f f s e t [row + 1] ; j ++) {

shmem_ctx_int64_p_nbi (ctx ,
&(∗At)−>nonzero [pos [row] [j] / npes] ,
row ∗ npes + me, pos [row] [j] % npes) ;

i f (A−>value != NULL) {
shmem_ctx_double_p (ctx ,

&(∗At)−>value [pos [row] [j] /
npes] , A−>l v a l u e [co l + j] ,
pos [row] [j] % npes) ;

}
}
f r ee (pos [row]) ;

}
shmem_ctx_quiet (c t x) ;
shmem_barr ier_al l () ;

Aggregation Contexts

Context implementation splits the second phase into
two similar to loop fission, fetching all the locations into
a buffer then later using those for the writes

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

9/19

Sparse Matrix Transpose Performance

Run with weak scaling on all 32 nodes of the HPC Advisory Council’s Iris system using OpenSHMEM
from OpenMPI 4.1.3 and NVIDIA ConnectX-6 HDR100 100 Gbit/s InfiniBand adapters

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

10/19

Now We See the Problem. . .

We had to split the second phase due to dependent
operations - it first had to fetch a value before using it in
a subsequent operation

What if a fetched value is used for or within an entire
inner loop?

What if there are multiple nested levels of that?

We want to be able to recognise when a symmetric
data object associated with a pending fetch is used,
and also defer the capture of its value

What if an application uses a fetched value for more
than just OpenSHMEM calls?

We want to be able to defer code until dependent
values are fetched as well

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

11/19

What to Do?

We want to track outstanding get/fetch operations and further defer
evaluation of subsequent operations when we detect their results
are reused
Store an index into a table containing additional metadata in the
local destination buffer

Metadata includes a reference back to the local buffer’s
address
If a symmetric data object is used whose value contains a
valid index, must check that the address referenced is the
same to avoid coincidental values

Upon use of a pending operation’s result in a future OpenSHMEM
call, capture operation type and its arguments to store in a queue
for later processing

During progress, execute and remove entries whose
dependent responses have been processed
If the pending queue reaches a maximum size, force progress
until operations are released before adding more

When the response for the operation is processed, clear the
metadata and store the final result

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

12/19

Now We Can Do This. . .

f o r (i n t i = 0 ; i < end ; i ++) {
shmem_int64_get_nbi (& l o c a l [i] , &remote [i] , 1 , pe) ;
shmem_int64_put_nbi (& remote [i] , & l o c a l [i] , 1 , another_pe) ;

}

Deferred Capture

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

13/19

. . . But We Can’t Do This

f o r (i n t i = 0 ; i < end ; i ++) {
shmem_int64_get_nbi (& l o c a l [i] , &remote [i] , 1 , pe) ;
shmem_int64_put_nbi (& remote [i] , &another_array [l o c a l [i]] , 1 , another_pe) ;

}

Deferred Capture

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

14/19

Deferring Non-OpenSHMEM Code

We want to be able to have lazy execution that can
defer general code which uses pending operation
results, similar to tasks

Directly accessing/modifying the value, using it as an
index, etc

Unlike before when focusing only on the OpenSHMEM
API, we may have any number of dependent operations

When do we capture non-dependent values (i.e., other
variables used in a code block that aren’t coming from a
fetch like loop indices)?

On “task” creation

On “task” execution

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

15/19

Deferring Non-OpenSHMEM Code

We note OpenSHMEM’s use of oshcc for compilation, similar to
MPI and its mpicc

Introduce a small pragma API for deferring statements or blocks
(#pragma shmem defer)

Dependent fetch results can be explicitly specified (i.e.,
defer(myvalue)) or automatically inferred by the compiler

Capture fetch results on execution by default, or optionally
immediately upon the associated operation’s completion if
requested with an immediate(myvalue) clause

Capture stack variables on “task” creation by default, or optionally
on execution with a shared(foo) clause

Similar to before, deferred code blocks are put in pending queues,
except that their execution and release from these queues requires
completion of all dependent fetches

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

16/19

Back to Sparse Matrix Transpose

/ / r e d i s t r i b u t e the nonzeros
f o r (i n t 6 4 _ t row = 0; row < A−>lnumrows ; row++) {

f o r (i n t 6 4 _ t j = A−>l o f f s e t [row] ; j <
A−>l o f f s e t [row + 1] ; j ++) {

i n t 6 4 _ t pos =
shmem_atomic_fetch_add(&shtmp [A−>lnonzero [j]
/ npes] , npes , A−>lnonzero [j] %
npes) ;

shmem_int64_p(&(∗At)−>nonzero [pos / npes] , row
∗ npes + me, pos % npes) ;

i f (A−>value != NULL) {
shmem_double_p(&(∗At)−>value [pos / npes] ,

A−>l v a l u e [j] , pos % npes) ;
}

}
}
shmem_barr ier_al l () ;

OpenSHMEM AGP

->

/ / r e d i s t r i b u t e the nonzeros
f o r (i n t 6 4 _ t row = 0; row < A−>lnumrows ; row++) {

f o r (i n t 6 4 _ t j = A−>l o f f s e t [row] ; j <
A−>l o f f s e t [row + 1] ; j ++) {

s t a t i c i n t 6 4 _ t ∗pos ;
shmem_ctx_int64_atomic_fetch_add_nbi (ctx , pos ,

&shtmp [A−>lnonzero [j] / npes] , npes ,
A−>lnonzero [j] % npes) ;

#pragma shmem defer immediate (pos)
{

shmem_ctx_int64_p_nbi (ctx ,
&(∗At)−>nonzero [pos / npes] , row
∗ npes + me, pos % npes) ;

i f (A−>value != NULL) {
shmem_ctx_double_p (ctx ,

&(∗At)−>value [pos / npes] ,
A−>l v a l u e [j] , pos % npes) ;

}
}

}
}
shmem_ctx_quiet (c t x) ;
shmem_barr ier_al l () ;

Aggregation Contexts

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

17/19

Status and Future Work

Design looks promising, but is still undergoing revisions

Complete implementation of defer pragma planned for
LLVM and eventually GCC

Current testing being performed on ORNL’s Frontier

We intend to use these enhancements to improve
Bale’s transpose and triangles applications, with the
goal of reaching a completed toposort

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

18/19

Related Work: OpenSHMEM Queues

OpenSHMEM queues 1 are another proposed method
of aggregation

Introduces a new API for explicitly pushing and popping
messages onto queues

Allows for QoS support for message prioritisation

Requires more substantial changes to application code

Operation is more transparent

No way to support deferred execution of code blocks

1
Vishwanath Venkatesan and Manjunath Gorentla Venkata. 2023. OpenSHMEM Queues: An abstraction for enhancing message rate, bandwidth utilization,

and reducing tail latency in OpenSHMEM Applications. In Workshops of The International Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA 10 Pages.

Introduction

Sparse Matrix
Transpose

Dependencies

Conclusions
and Related
Work

19/19

Thank You

You can reach me for further questions at dawelch@uh.edu

Previously published results for aggregation contexts:

Welch, A., Hernandez, O., and Poole, S. Extending OpenSHMEM with
Aggregation Support for Improved Message Rate Performance. In Euro-Par 2023:
Programming, Compilers, and Performance: 29th International Conference on
Parallel and Distributed Computing, Limassol, Cyprus, August 28-September 1,
2023.

