
1

Cross-GVMI UMR Mkey Pool
Yong Qin, Ph.D. | UCF 2023 | 12/6/2023

2

Data Processing Unit

3

NVIDIA’s BlueField Data Processing Unit

Infrastructure Management

Software-defined Storage

Software-defined Security

Software-defined Networking

Acceleration Engines

DPU ACCELERATED SERVER

NVIDIA DPU with Arm Cores & Accelerators

HOST

GENERIC DPU-BASED SERVER

Infrastructure Management Software Defined Security

Software-defined Storage Software-defined Networking

Acceleration Engines

Programmable NIC

HOST

4

DPU Offloading Model

• Extension of application process – algorithms split between host and DPU

• Offload system services – storage, security, etc.

• Offload user applications – AI/ML, simulations, communications, etc.

5

DPU-Offloaded Unified Collective Communication (UCC)

6

Cross-GVMI Memory Key (Mkey)

• Guest Virtual Machine ID (GVMI) or vHCA ID

• Special memory keys that allow DPU based work requests to reference host side memory

• DPU can initiate data transfer on behalf of the host w/o host involvement

• No need to move data to the DPU before DPU can send it

• Post receive work requests for host-resident memory

7

UCC Workflow with Cross-GVMI Mkey

• Host map user buffer via ucp_mem_map()

• Host pack memh via ucp_memh_pack() (register target mkey if necessary) then send to DPU via HOST_ARRIVE_EVENT

• DPU map xgvmi user buffer via ucp_mem_map() (register alias mkey if necessary)

• DPU pack rkey via ucp_rkey_pack() then send to remote DPU via DPU_RTS_EVENT

• Remote DPU unpack rkey via ucp_ep_rkey_unpack() then issue RDMA_READ (ucp_get_nbx())

• At completion both end unmap user buffer via ucp_mem_unmap()

HOST

ucp_mem_map()
ucp_memh_pack()

ucp_mem_unmap()

DPU

ucp_mem_map()
ucp_rkey_pack()

ucp_ep_rkey_unpack()
ucp_get_nbx()

ucp_mem_unmap()

8

Cross-GVMI Mkey Registration in UCX (Previous/BlueField-2)

• Host register user buffer via umem registration (no
ibv_reg_mr, cost varies with buffer size, could be >110ms
for 1GB)

• Significant performance bottleneck for large user
buffers

• Host create mkey with the registered user buffer (fixed
cost ~160us)

• Host modify mkey to allow xgvmi access (cost varies with
buffer size, in the order of 100~200us)

• DPU create mkey alias for the host mkey (fixed cost
~200us)

HOST

devx_umem_reg()
devx_create_mkey()

devx_allow_xgvmi_access()

DPU

devx_create_mkey_alias()

cost (ns)

umem

16 KB 1 MB 64 MB 1 GB

host umem registration 165,139 320,991 5,833,211 114,294,081

host mkey creation 158,753 159,132 158,678 160,000

host mkey export 94,778 101,124 107,185 185,765

host mkey destroy 137,371 137,560 136,885 138,362

host umem deregistration 74,027 132,564 386,428 2,473,056

dpu mkey registration 176,168 176,198 176,236 196,198

dpu mkey deregistration 149,525 149,585 149,687 159,722

9

Cross-GVMI Mkey Registration in UCX (Current/BlueField-3)

• Host register user buffer via ibv_reg_mr and KSM

• Use direct mkey to create an indirect mkey

• Host modify indirect mkey to allow xgvmi access (cost
varies with buffer size, in the order of 100~200us)

• DPU create mkey alias for the host mkey and GVMI (fixed
cost ~200us)

cost (ns)

indirection

16 KB 1 MB 64 MB 1 GB

host umem registration 165,139 320,991 5,833,211 114,294,081

host memory registration 10,125 22,296 232,007 5,823,605

host mkey creation 158,753 159,132 158,678 160,000

host mkey export 94,778 101,124 107,185 185,765

host mkey destroy 137,371 137,560 136,885 138,362

host umem deregistration 74,027 132,564 386,428 2,473,056

host memory deregistration 8,230 14,073 28,635 2,585,700

dpu mkey registration 176,168 176,198 176,236 196,198

dpu mkey deregistration 149,525 149,585 149,687 159,722

HOST

ibv_reg_mr()
devx_reg_ksm_data()

devx_allow_xgvmi_access()

DPU

devx_create_mkey_alias()

10

Cross-GVMI Mkey Registration in UCX (UMR/BlueField-3)

• Host register user buffer via ibv_reg_mr and User-Mode
Memory Registration

• Host create indirect (UMR) mkey (fixed cost ~220us)

• Host register direct mkey to indirect mkey (fixed cost
~1us)

• Host modify indirect mkey to allow xgvmi access (cost
varies with buffer size, in the order of 100~200us)

• DPU create mkey alias for the host mkey and GVMI (fixed
cost ~200us)

HOST

ibv_reg_mr()
dv_create_indirect_mkey()

dv_reg_mr()
devx_allow_xgvmi_access()

DPU

devx_create_mkey_alias()

cost (ns)

umr

16 KB 1 MB 64 MB 1 GB

host memory registration 10,125 22,296 232,007 5,823,605

host umr mkey creation 216,900 217,703 217,908 218,510

host umr mkey registration 1,025 1,097 1,080 1,022

host umr mkey export 138,253 147,796 147,373 201,466

host umr mkey invalidation 973 1,008 1,030 1,018

host umr mkey destroy 150,892 151,362 151,745 151,781

host memory deregistration 8,230 14,073 28,635 2,585,700

dpu mkey registration 177,270 174,919 176,509 193,689

dpu mkey deregistration 150,699 148,548 149,765 157,555

11

Cross-GVMI Mkey Registration in UCX (UMR Mkey Pool/BlueField-3)
Credit to: Gil Bloch@NVIDIA

• Host register user buffer via ibv_reg_mr and User-Mode
Memory Registration

• Host create indirect (UMR) mkey (fixed cost ~220us)

• Host register direct mkey to indirect mkey (fixed cost
~1us)

• Host modify indirect mkey to allow xgvmi access (cost
varies with buffer size, in the order of 100~200us)

• DPU create mkey alias for the host mkey and GVMI (fixed
cost ~200us)

• Applications use lots of temporary buffers

• Save 800~900us per Mkey – important for P2P operations

HOST

ibv_reg_mr()
dv_create_indirect_mkey()

dv_reg_mr()
devx_allow_xgvmi_access()

DPU

devx_create_mkey_alias()

cost (ns)

umr

16 KB 1 MB 64 MB 1 GB

host memory registration 10,125 22,296 232,007 5,823,605

host umr mkey creation 216,900 217,703 217,908 218,510

host umr mkey registration 1,025 1,097 1,080 1,022

host umr mkey export 138,253 147,796 147,373 201,466

host umr mkey invalidation 973 1,008 1,030 1,018

host umr mkey destroy 150,892 151,362 151,745 151,781

host memory deregistration 8,230 14,073 28,635 2,585,700

dpu mkey registration 177,270 174,919 176,509 193,689

dpu mkey deregistration 150,699 148,548 149,765 157,555

12

Cross-GVMI UMR Mkey Pool Architecture

• UMR dedicated QP and CQ

• UMR Mkey pool (on the host) and hash map (on the DPU)

• Dummy UMR Mkeys upfront (or lazy UMR Mkey creation at first use)

• Reuse RCACHE (both host and DPU)

• MR found in RCACHE – reuse

• MR not found in RCACHE

• Host: retrieve one UMR Mkey from Mkey pool / create a new UMR Mkey

• DPU: find the alias from hash map / create a new alias

/* Data structure to hold the UMR MR (on the host) item in the mkey pool */
typedef struct {
 ucs_list_link_t super;
 struct mlx5dv_mkey *umr_mkey;
} uct_ib_mlx5dv_indirect_mr_t;

/* Data structure to hold the UMR mkey alias (on the DPU) item in the hash map */
typedef struct {
 struct mlx5dv_devx_obj *cross_mr;
 uint32_t lkey;
} uct_ib_mlx5dv_indirect_alias_t;

/* Hash map of indirect mkey (from the host) to mkey alias (on the DPU) */
/* Note the hash key here is: gvmi_id << 32 | mkey (both uint32_t) */
KHASH_MAP_INIT_INT64(indirect_mkey_map, uct_ib_mlx5dv_indirect_alias_t);

13

Zero-based Virtual Address Region

• UMR Mkeys can only be used in zero-based mode

• Incompatible with existing UCX Mkey management mechanism

• POC

• Expand uct_ib_mem_t

• Pack base address and flags for memh and rkey

• Build WQE with proper offset using base address

• Caveat - overlapped memory regions

• How to deal with?

• POC – instructions to use XGVMI Mkey in RDMA operations

• Quick to implement but POC only (not necessarily handle every corner cases)

• New memory type

• Longer time to implement, fully compatible with existing UCX infrastructure, but may incur overheads to register same memory region
with different memory types

• New Mkey management mechanism

• A new architecture from bottom up, future proof, support for different transports, but touches everything in UCP & UCT

• (No need to deal with if UMR Mkeys can be used with normal VA)

typedef struct uct_ib_mem {
uint64_t address;

 uint32_t lkey;
 uint32_t exported_lkey;
 uint32_t rkey;
 uint32_t atomic_rkey;
 uint32_t indirect_rkey;

uint32_t flags;
} uct_ib_mem_t;

14

Performance Evaluation / Summary

• Modified osu_alltoallv with temporary buffers for each iteration

• 32 Nodes 32 PPN, BlueField-3, 4 SPs, 4 Sends and 4 Receives

• 34% better @16KB than current (indirect Mkey), 17% better @32KB

• Performance determined by “registration cost/communication cost”

• No overprovisioning of UMR Mkeys

1.00E+05

1.00E+06

1.00E+07

1.00E+08

16384 32768 65536 131072 262144 524288

L
a

te
n

c
y
 (

u
s
)

Size (B)

osu_alltoallv with Temp Buffers Performance

HOST

UMEM

INDIRECT

UMR

15

	Slide 1: Cross-GVMI UMR Mkey Pool
	Slide 2: Data Processing Unit
	Slide 3: NVIDIA’s BlueField Data Processing Unit
	Slide 4: DPU Offloading Model
	Slide 5: DPU-Offloaded Unified Collective Communication (UCC)
	Slide 6: Cross-GVMI Memory Key (Mkey)
	Slide 7: UCC Workflow with Cross-GVMI Mkey
	Slide 8: Cross-GVMI Mkey Registration in UCX (Previous/BlueField-2)
	Slide 9: Cross-GVMI Mkey Registration in UCX (Current/BlueField-3)
	Slide 10: Cross-GVMI Mkey Registration in UCX (UMR/BlueField-3)
	Slide 11: Cross-GVMI Mkey Registration in UCX (UMR Mkey Pool/BlueField-3)
	Slide 12: Cross-GVMI UMR Mkey Pool Architecture
	Slide 13: Zero-based Virtual Address Region
	Slide 14: Performance Evaluation / Summary
	Slide 15

