<ANVIDIA.

Improvmg QommiHMEMit‘fin:g

network Priority o

UCF 2022 Annual Meeting and Workshop
Vishwanath(Vish) Venkatesan, Manjunath Gorentla Venkata

Motivation and Agenda

Motivation

Achieving good Quality of Service(QoS) for short messages - desirable characteristic for OpenSHMEM applications

Congestion due to contention for network switches, I/O subsystems etc., - cause adverse user experience and
impact system performance

Problem can exacerbate with increasing scale in leadership scale systems
Network congestion can typically lead to prolonged tail latency

This work studies how to achieve shorter tail latencies for short messages
Features available in NVIDIA infiniband hardware specifically Virtual Lanes
Exposing QoS prioritization to users through newly proposed OpenSHMEM queues API

Agenda
Introduce definition of tail latency and measurement strategy

Design and Implementation for QoS based Interfaces in OpenSHMEM and UCX

Experimental Evaluation

Summary and Future work

2 NVIDIA.

Congestion and Tail Latency

Tail Latency

Small percentage of the transfer times in a system that take the longest in comparison to bulk Tail Latency Benchmark
of the transfers (typically p99)

P99 tail latency value marks that 99% samples are faster than or equal to the p99 value. PEs <plit between
N/W congestion can be characterized with the help of tail latency Network Tests and

Congestor Tests

Benchmark to measure tail latency
GPCNeT is a benchmark which measures congestion by running multiple types of

IF
G Congestor Sl
. . ; PEs
communication patterns at the same time

Leverage essence of GPCNeT to create an OpenSHMEM benchmark to measure congestion o

Create systematic congestion with communication traffic simultaneously AlltoAll RMA operation
congestor (Put/Get/
Benchmark Atomic-Add)

Tail Latency benchmark Execution sequence

Divide SHMEM - PEs between isolated and congestor pattern tests. (1) Statistics
. Computation and
Measure isolated non-congestor communication latency and their tail latencies (2) Tail Latency

Benchmark

Start congestion traffic in PEs (3)
Measure congested latency and tail latency (4)

. . . . Report Congestion
Repeat (2-4) for all isolated communication patterns based on user input

3 NVIDIA.

Infiniband Virtual and Service Lanes
Mitigation - Design (l)

* NVIDIA Infiniband architecture (IBA) includes Quality of Service and Congestion control features
 All IBA packets contain a local route header (LRH) with SL information to forward packets within a subnet
« All packets across subnets contain a global route header (GRH) which also carries SL information in the TCLASS field
+ IBA utilizes a memory-based user-level communication abstraction (Queue Pair) — a logical endpoint (host side)
 Port side of channel adapter implements Virtual Lanes - enable multiple independent data flows sharing the same link
« Service Lanes - permits a packet to operate at one of 16 SLs
- IBA does not define a specific relationship between SL value and forwarding behavior
+ SL to VL mapping defined at the subnet layer allows QoS implementation on IBA

Local Global Base Extended))

X i Invariant Variant
Routing Routing Transport Transport Message Payload

CRC CRC
Header Header Header Header
HCA Transport — Host Side DMA
HCA Transport
[v | st || oup
Port Side
TCLASS | | DGID |

4 <A NVIDIA. I

OpenSHMEM Queues

Abstraction for communication aggregation, data aggregation and expressing QoS with ability to segregate traffic

OpenSHMEM queue is an opaque object - users can interact with the queue through OpenSHMEM queue
interfaces only.

Aggregation
Communication queues are used for aggregating communication operations
Data queues enable aggregating of data before sending the data to the destination PEs
Aggregation should be agnostic of the underlying mechanisms
Aggregation should be agnostic of thread posting the operation
QoS with Queues
Express QoS on the ability to segregate traffic
Priority queues mapped to separate Service Lanes (SL) for short messages

Detailed API proposal of OpenSHMEM queues for the OpenSHMEM specification available in [1]

[1] OpenSHMEM Queues Architecture document:
https://github.com/manjugv/osh_public_docs/blob/master/gorentla_osh_queues_v0.1

5 NVIDIA.

https://github.com/openshmem-org/specification/issues/483

OpenSHMEM Queues - QoS/Communication queue APIs

/** shmem_queue.h */ /** OpenSHMEM communication queue APIs */

...SNIP... int shmem_queue_comm_create(shmem_queue_t *queue,

typedef enum { shmem_queue_config_t *qconfig);
SHMEM_QUEUE_COMM = 0, int shmem_queue_comm_destroy(shmem_queue_t queue);
SHMEM_QUEUE_DATA = 1, int shmem_queue_TYPE_comm_push(shmem_queue_t queue, TYPE *dest, TYPE *src,
SHMEM_QUEUE_QOS = 2 size_t nelems, int pe, uinté4_t op);

} shmem_queue_type_t; int shmem_queue_progress(shmem_queue_t queue);

int shmem_queue_global_flush(shmem_queue_t queue);
typedef enum {

SHMEM_QOS_HIGH_PRI = 0, /** Highest possible QoS on the system*/
SHMEM_QOS_MEDIUM_PRI = 1, /** Best effort QoS - pick the best */
SHMEM_QOS_LOW_PRI = 2, /** Lowest possible priority for messages */

S ST e R APIs for QoS priority queues and Communication queues
typedef struct shmem_queue_config { Depen(_jing on the shmem_queue_type_t the appropriate
shmem_queue_type_t qtype; queue is selected
shmem_queue_sharing_t sharing_model;
/* Exhaustive optional fields */ Communication queues enable aggregation for the

uint64_t max_elems; /* Applicable for communication queues*/

Lint64_t max_bytes: /+* Applicable for data queues */ communication operations such as_(shmem_put__nbl,
shmem_gqos_class_t qos_class; /** Qos class to use */ shmem_get_nbi and atomic operations) - collectives are not
double timeout_flush; supported with this mechanism

shmem_op_type_t op_type;
shmem_pe_type_t pe_type;
} shmem_queue_config_t;

[1] OpenSHMEM Queues Architecture document: https://github.com/manjugv/osh_public_docs/blob/master/gorentla_osh_queues_v0.1

6 NVIDIA.

Implementation

' SULNE
Application -

Case Study - Synthetic benchmark with short
message and congestor traffic together

OpenSHMEM - Select SL for each Process
(test/congestor) using OpenSHMEM queue API.
(create a QoS priority queue)

Application
OpenSHMEM

Y

UCX - UCP worker selects relevant IBA SL value
based on User - priority

Switch

Subnet Manager Configuration
(three priority lanes)

Application
OpenSHMEM
ucx

qos TRUE -
qos_max_vls 3

qos_high_limit 255

qos_vlarb_high 1:255 -> lane 1 for high priority
qos_vlarb_low 0:64, 2:64 -> lane 0 and 2 low priority
qos_sl2vl 0,1,2

Subnet
Manager

7 <ANVIDIA. I

Experimental Evaluation

IRIS Cluster - HPC Advisory Council

Dual Socket Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz (Cascade Lake)
32 node Cluster - 28 cores/node

NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters with Socket Direct
NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand

Memory: 187GB DDR4 2933 MHz RDIMMSs per node
Exclusive access with control over Subnet manager for measurement

Three service lanes created - 1 with highest priority for prioritizing network traffic

NVIDIA.

PE - SHMEM operation

Results
Congestion Impact - P99 Tail Latency

Cl = p99 latency(congested)/p99 latency(baseline)

768 atomicadd
640_atomicadd

768_get

768 put

640 put

0 p 2 3 4 5 6
Congestion Impact

mCongested mQoS-mitigated

—
—
_

640_get —
F
P

9 <ANVIDIA. I

count

Results (I)

Detailed Histogram

Put Latency OSHMEM 640 PEs with Congestion and QoS Optimization

10°

103

10!

10%

103

10!

10°
103

10!

100

-
B
*away
Ferag
-

Baseline Put Latency OSHMEM 640 PEs

- = Avg
—=—- percentile_99

: 0
R I e = aliad
it R LA T 3

e o

Congested Put Latency OSHMEM 640 PEs

1y
@)

QoS API Priority Put Latency OSHMEM 640 PEs

N
~j

I
| B i Y m .

A g
' o S
i : ol W
I - . -
10!
latency (usec)

10 <ANVIDIA. I

OpenSHMEM Queues - Aggregation (Work in Progress)

Aggregated/Batched RMA operations lead to higher message rate and bandwidth
Hardware capability to achieve higher message rates specifically for small messages limited by software impediments
Bale Package - exstack, conveyors demonstrate the importance of aggregation for message rate OpenSHMEM PE/Thread

Aggregating Puts/Gets/Atomics from multiple OpenSHMEM PEs using OpenSHMEM communication queues
Design Choices: postlist, optimizing h/w fences, UMR, DPUs

OpenSHMEM communication queues for Aggregation
Current verbs Postlist based aggregation implementation

Can merge WR entries by passing a list through the ibv_sge structure.

Leverage IOV datatype in ucp_put/get_nbx instead of simple send/recv buffer semantics OpenSHMEM Queues
Trigger aggregation by using the datatype argument in ucp_request_param_t

rc verbs provider in UCT layer is used for submitting a postlist for this

implementation. [] shmem_get_nbi

[] shmem_put_nbi
Constructs a sg_list based on the number of WRs and submitted through ibv_post_send [] shmem_atomic_*

11 NVIDIA.

OpenSHMEM Queues - Aggregation (Early Results)

Work in progress

+ System information 25

* IRIS cluster from HPC Advisory Council machines

+ Dual Socket Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz
(Cascade Lake)

- 32 node Cluster - 28 cores/node 1.
- NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters with

Socket Direct
- NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR

InfiniBand
- Memory: 187GB DDR4 2933 MHz RDIMMs per node 0-

* Benchmark
0
1 2 4 8 16

* OSU OpenSHMEM message rate benchmark
* Modified with OpenSHMEM communication queue APls Message Size (bytes)

= (6] N

Message Rate Scalability

€]

* Threshold provided with environment variable
. . . W No Aggregation M Aggregation Threshold (2) m Aggregation Threshold (4)
* Aggregation shows around 2.2x improvement in message rate .

* Higher threshold tests are in progress.

12 <ANVIDIA. I

Summary and Future Work

Congestion under heavy load can have a big impact on application performance.

OpenSHMEM priority queues helps achieve Shorter tail latency even with congestion
Our Results Demonstrate > 2.5x reduction in tail latency with our approach

The OpenSHMEM queues API also provides a neat abstraction for QoS

Allows users to prioritize communication traffic from OpenSHMEM applications when
there are ordering concerns

Enables portability for new congestion mitigation approaches/hardware in future
Investigate in-network telemetry aware congestion mitigation from OpenSHMEM
Using Cache Stashing in supported processors as a design point to reduce tail latency.

Ongoing and Future work
Improving Message rate with better aggregation mechanisms for OpenSHMEM queues
Support OpenSHMEM data queues aggregation
Explore offloading opportunities for progress and aggregation offload to DPUs

13

NVIDIA.

	Improving QoS for OpenSHMEM using in-network Priority
	Motivation and Agenda
	Congestion and Tail Latency
	Infiniband Virtual and Service Lanes
	OpenSHMEM Queues
	OpenSHMEM Queues – QoS/Communication queue APIs
	Implementation
	Experimental Evaluation
	Results
	Results (II)
	OpenSHMEM Queues – Aggregation (Work in Progress)
	OpenSHMEM Queues – Aggregation (Early Results)
	Summary and Future Work
	Slide Number 14

