
1

Improving QoS for OpenSHMEM using in-
network Priority
UCF 2022 Annual Meeting and Workshop

Vishwanath(Vish) Venkatesan, Manjunath Gorentla Venkata

2

Motivation and Agenda
QoS for Small message Operations

Motivation
• Achieving good Quality of Service(QoS) for short messages - desirable characteristic for OpenSHMEM applications

• Congestion due to contention for network switches, I/O subsystems etc., - cause adverse user experience and
impact system performance

• Problem can exacerbate with increasing scale in leadership scale systems

• Network congestion can typically lead to prolonged tail latency

• This work studies how to achieve shorter tail latencies for short messages
• Features available in NVIDIA infiniband hardware specifically Virtual Lanes
• Exposing QoS prioritization to users through newly proposed OpenSHMEM queues API

Agenda
• Introduce definition of tail latency and measurement strategy

• Design and Implementation for QoS based Interfaces in OpenSHMEM and UCX

• Experimental Evaluation

• Summary and Future work

3

Congestion and Tail Latency
Definition and Measurement Methodology

• Tail Latency
• Small percentage of the transfer times in a system that take the longest in comparison to bulk

of the transfers (typically p99)
• P99 tail latency value marks that 99% samples are faster than or equal to the p99 value.
• N/W congestion can be characterized with the help of tail latency

• Benchmark to measure tail latency
• GPCNeT is a benchmark which measures congestion by running multiple types of

communication patterns at the same time
• Leverage essence of GPCNeT to create an OpenSHMEM benchmark to measure congestion
• Create systematic congestion with communication traffic simultaneously

• Tail Latency benchmark Execution sequence
• Divide SHMEM - PEs between isolated and congestor pattern tests. (1)
• Measure isolated non-congestor communication latency and their tail latencies (2)
• Start congestion traffic in PEs (3)
• Measure congested latency and tail latency (4)
• Repeat (2-4) for all isolated communication patterns based on user input

4

Infiniband Virtual and Service Lanes
Mitigation - Design (I)

• NVIDIA Infiniband architecture (IBA) includes Quality of Service and Congestion control features
• All IBA packets contain a local route header (LRH) with SL information to forward packets within a subnet
• All packets across subnets contain a global route header (GRH) which also carries SL information in the TCLASS field
• IBA utilizes a memory-based user-level communication abstraction (Queue Pair) – a logical endpoint (host side)
• Port side of channel adapter implements Virtual Lanes – enable multiple independent data flows sharing the same link
• Service Lanes – permits a packet to operate at one of 16 SLs
• IBA does not define a specific relationship between SL value and forwarding behavior
• SL to VL mapping defined at the subnet layer allows QoS implementation on IBA

5

OpenSHMEM Queues
Mitigation - Design (II)

• Abstraction for communication aggregation, data aggregation and expressing QoS with ability to segregate traffic

• OpenSHMEM queue is an opaque object - users can interact with the queue through OpenSHMEM queue
interfaces only.

• Aggregation
• Communication queues are used for aggregating communication operations
• Data queues enable aggregating of data before sending the data to the destination PEs
• Aggregation should be agnostic of the underlying mechanisms
• Aggregation should be agnostic of thread posting the operation

• QoS with Queues
• Express QoS on the ability to segregate traffic
• Priority queues mapped to separate Service Lanes (SL) for short messages

• Detailed API proposal of OpenSHMEM queues for the OpenSHMEM specification available in [1]

[1] OpenSHMEM Queues Architecture document: OpenSHMEM Queues for Aggregation · Issue #483 · openshmem-org/specification.

https://github.com/manjugv/osh_public_docs/blob/master/gorentla_osh_queues_v0.1_oct29th.pdf

https://github.com/openshmem-org/specification/issues/483

6

OpenSHMEM Queues – QoS/Communication queue APIs
Mitigation - Design (III)

[1] OpenSHMEM Queues Architecture document: https://github.com/manjugv/osh_public_docs/blob/master/gorentla_osh_queues_v0.1_oct29th.pdf

• APIs for QoS priority queues and Communication queues

• Depending on the shmem_queue_type_t the appropriate
queue is selected

• Communication queues enable aggregation for the
communication operations such as (shmem_put_nbi,
shmem_get_nbi and atomic operations) – collectives are not
supported with this mechanism

7

Implementation

8

Experimental Evaluation
Setup

• IRIS Cluster – HPC Advisory Council

• Dual Socket Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz (Cascade Lake)
• 32 node Cluster – 28 cores/node

• NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters with Socket Direct

• NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand

• Memory: 187GB DDR4 2933 MHz RDIMMs per node
• Exclusive access with control over Subnet manager for measurement

• Three service lanes created – 1 with highest priority for prioritizing network traffic

9

Results
Congestion Impact – P99 Tail Latency

CI = p99_latency(congested)/p99_ latency(baseline)

10

Results (II)
Detailed Histogram

11

OpenSHMEM Queues – Aggregation (Work in Progress)

• Aggregated/Batched RMA operations lead to higher message rate and bandwidth
• Hardware capability to achieve higher message rates specifically for small messages limited by software impediments
• Bale Package - exstack, conveyors demonstrate the importance of aggregation for message rate

• Aggregating Puts/Gets/Atomics from multiple OpenSHMEM PEs using OpenSHMEM communication queues
• Design Choices: postlist, optimizing h/w fences, UMR, DPUs

• OpenSHMEM communication queues for Aggregation
• Current verbs Postlist based aggregation implementation
• Can merge WR entries by passing a list through the ibv_sge structure.
• Leverage IOV datatype in ucp_put/get_nbx instead of simple send/recv buffer semantics

• Trigger aggregation by using the datatype argument in ucp_request_param_t

• rc verbs provider in UCT layer is used for submitting a postlist for this
implementation.

• Constructs a sg_list based on the number of WRs and submitted through ibv_post_send

12

OpenSHMEM Queues – Aggregation (Early Results)
Work in progress

• System information
• IRIS cluster from HPC Advisory Council machines
• Dual Socket Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz

(Cascade Lake)
• 32 node Cluster – 28 cores/node
• NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters with

Socket Direct
• NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR

InfiniBand
• Memory: 187GB DDR4 2933 MHz RDIMMs per node

• Benchmark
• OSU OpenSHMEM message rate benchmark

• Modified with OpenSHMEM communication queue APIs

• Threshold provided with environment variable

• Aggregation shows around 2.2x improvement in message rate .

• Higher threshold tests are in progress.

0

0.5

1

1.5

2

2.5

1 2 4 8 16

M
es

sa
ge

 R
at

e
Sc

al
ab

ili
ty

Message Size (bytes)

No Aggregation Aggregation Threshold (2) Aggregation Threshold (4)

13

Summary and Future Work

• Congestion under heavy load can have a big impact on application performance.

• OpenSHMEM priority queues helps achieve Shorter tail latency even with congestion
• Our Results Demonstrate > 2.5x reduction in tail latency with our approach

• The OpenSHMEM queues API also provides a neat abstraction for QoS
• Allows users to prioritize communication traffic from OpenSHMEM applications when

there are ordering concerns
• Enables portability for new congestion mitigation approaches/hardware in future

• Investigate in-network telemetry aware congestion mitigation from OpenSHMEM

• Using Cache Stashing in supported processors as a design point to reduce tail latency.

• Ongoing and Future work
• Improving Message rate with better aggregation mechanisms for OpenSHMEM queues
• Support OpenSHMEM data queues aggregation
• Explore offloading opportunities for progress and aggregation offload to DPUs

14

	Improving QoS for OpenSHMEM using in-network Priority
	Motivation and Agenda
	Congestion and Tail Latency
	Infiniband Virtual and Service Lanes
	OpenSHMEM Queues
	OpenSHMEM Queues – QoS/Communication queue APIs
	Implementation
	Experimental Evaluation
	Results
	Results (II)
	OpenSHMEM Queues – Aggregation (Work in Progress)
	OpenSHMEM Queues – Aggregation (Early Results)
	Summary and Future Work
	Slide Number 14

