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CPU Versus Stream Synchronous Communication
GPU Coordinates Data Dependencies Without CPU Involvement
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GPU Integrated Communication Libraries

• Goals for today’s session:
• Discuss how to support GPU integrated communication (e.g. in Open MPI) on top of UCX
• Discuss how to enable best possible performance for UCX

• E.g. GPU SM integrated communication, GPUDirect Async, and other technologies
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Kernel 
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NCCL X X Proxy

NVSHMEM X X X Proxy or GIC

LibMP X X X GPUDirect Async

MPI Proposed Proposed Partitioned TBD



CUDA Streams and Graphs

Lessons Learned from LibMP

MPI Accelerator Extensions

UCX Stream Synchronous Communication APIs
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CUDA Streams and Graphs
Credit: Stephen Jones
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CUDA STREAMS
GPU Work Submission Queues
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CUDA GRAPHS

CUDA Graphs can be captured from streams (or 
explicitly constructed) and can be replayed multiple 
times

Graphs can reduce overheads:

• Launch multiple kernels with one operation (host 
overhead)

• Schedule work closer to GPU execution units 
(device overhead)

Optimize Workflows and Reduce Launch Overheads
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THREE-STAGE EXECUTION MODEL
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WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

Launch Grid 
Initialization 2µs Kernel

Grid 
Initialization 2µs Kernel Grid 

Initialization 2µs Kernel 53% Overhead

Breakdown of time spent during execution
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WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

53% Overhead

Breakdown of time spent during execution

CPU-side launch overhead reduction

Launch Grid 
Initialization 2µs Kernel

Grid 
Initialization 2µs Kernel Grid 

Initialization 2µs Kernel

46% Overhead
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WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

53% Overhead

46% Overhead

37% Overhead

Breakdown of time spent during execution

CPU-side launch overhead reduction

Device-side execution overhead reduction

Launch Grid 
Initialization 2µs Kernel

Grid 
Initialization 2µs Kernel Grid 

Initialization 2µs Kernel

26% shorter total time
with three 2µs kernels



LibMP Lessons Learned
Credit: Pak Markthub and Davide Rosetti



LibMP Overview
https://github.com/gpudirect/libmp

• LibMP is a lightweight messaging library
• Point-to-point and one-sided communications

• LibMP is a thin layer on top of GPUDirect Async
• No tags, no wildcards, no data types
• No synchronization protocol, e.g. back pressuring, credit exchange, ready to receive, etc.

• Intended to easily combine GPUDirect Async with GPUDirect RDMA

• Uses MPI as an out-of-band mechanism to bootstrap execution
• MPI is not used during actual communication

https://github.com/gpudirect/libmp


CUDA Interaction With External Depenencies

• Interaction with external dependencies through flags in CUDA accessible memory

1. Kernels
• Kernels can update and spin on flags
• Blocks any dependent work in the CUDA stream/graph

2. CUDA Memory Operations
• cuStreamWriteValue32/64 – Update a flag in CUDA accessible memory when execution reaches this task
• cuStreamWaitValue32/64 – Wait for a flag in CUDA accessible memory memory to satisfy condition

• Conditions: Equal, greater-or-equal, AND, NOR



LibMP on Stream
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LibMP on Graph
Prologue & Epilogue by GPU

mp-isend

mp-iwait

Graph Network Stack
WQ

CQ

DB

3. SM polls & sets CQ DBR

1. SM writes WQE

2. SM writes DB

• Put WQ, CQ, DBR on GPU memory for better 
performance.

• Software stack is ready on Coral (P9).
• Need patches on other systems.

• QP is incompatible with ibverbs.



LIBMP PERFORMANCE ANALYSIS

• CPU sync: 
• Communication from CPU, compute offloaded to GPU

• LibMP Stream:
• KernelOps version used, not StreamMemOps

• LibMP+Graphs vs. LibMP: clear gains [35,67]%
• LibMP+Graphs vs. CPU sync: [-37,30]%

• Gains from direct triggering via memory overwhelms the 
communication kernel invocation overheads
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Lessons Learned

• Simple protocols enable efficient integration of communication with CUDA
• Memory registration, matching, protocol progression, etc.
• Some simplifications (e.g. no crediting, rendezvous, etc.) hard for applications to adopt

• Overheads from enqueueing communication must be,
• Less than gains from directly triggering communication
• Minimized by enqueueing in batches (e.g. batch memOps)
• Hidden by overlapping with computation

• MemOp parallelism is limited by the number of FIFOs assigned to the CUDA context
• CUDA_DEVICE_MAX_CONNECTIONS - 1 to 32 (default is 8)

• Graphs can naturally resolve these issues:
1. Protocols – Declaring “persistent” communication ahead of time
2. Offloading overheads – Submitting graph to GPU as a single request
3. Parallelism – Scheduling dependencies close to GPU where greater parallelism is possible



MPI Accelerator Extensions



Accelerator Triggered Communication

Send/Recv data buffers are broken into equal-sized partitions

• MPI_Pready: mark partition as ready to send

• MPI_Parrived: query if partition has arrived

Partitioned operations match once in own matching space based on order of init calls

Using the MPI 4.0 Persistent Partitioned Communication API

MPI_Psend MPI_Precv

MPI_Pready



Kernel Triggered Communication Usage

Device Code

__global__ kernel(..., MPI_Prequest preq) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, preq);

}

Partitioned Neighbor Exchange

Host Code

MPI_Request req[2];
MPI_Prequest preq;
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
MPI_Prequest_create(req[0], MPI_INFO_NULL, &preq);
while (...) {

MPI_Startall(2, req);
kernel<<<..., s>>>(..., preq);
MPI_Waitall(2, req);

}
MPI_Prequest_free(&preq);
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);
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MPI STREAM TRIGGERED API PROPOSAL
Simple Ring Exchange

MPI_Request send_req;
MPI_Request recv_req;

for (i = 0; i < NITER; i++) {
if (i > 0) {
MPI_Wait_enqueue(recv_req, &rstatus, MPI_CUDA_STREAM, stream);
MPI_Wait_enqueue(send_req, &sstatus, MPI_CUDA_STREAM, stream);

}

kernel<<<..., stream>>>(send_buf, recv_buf, …);

if (i < NITER – 1) {
MPI_Irecv_enqueue(&recv_buf, …, recv_req, MPI_CUDA_STREAM, stream);
MPI_Isend_enqueue(&send_buf, …, send_req, MPI_CUDA_STREAM, stream);

}
}

kernel

Irecv

Isend

Wait

Wait

kernel

Irecv

Isend
…

stream



MPI-ACX
Prototype of Stream, Graph, and Kernel Triggered Operations

• Proxy thread issues communication
• Calls the triggered MPI function
• Uses one flag per operation in host registered memory

• Supports:
• Kernel triggered bindings for partitioned communication
• Stream/graph synchronous Isend, Irecv, and Wait

https://github.com/NVIDIA/mpi-acx

https://github.com/NVIDIA/mpi-acx


Proposed UCX Stream 
Synchronous Communication APIs



Goals

1. UCX support for stream and graph synchronous communication
• Enqueue UCX operations on an external synchronization resource
• Communication is not initiated until dependencies are met
• Each stream is treated similarly to a separate thread

2. UCX support for kernel triggered communication
• Calls to MPI_Pready / MPI_Parrived on GPU

3. Simplify protocols to enable efficient implementaitons
• Do as much control/setup on CPU (e.g. memory mapping/registration) ahead of time
• Data transfers / RDMA ops triggered or performed by CUDA

4. Progress should be external to the GPU
• Accessing MPI internal state and advancing operations from GPU can be inefficient

Send_nbx

Recv_nbx

Waitall

Kernel

Trigger 
Send_nbx

Stream A



UCP API Extension
Extend ucp_request_param_t with Condition

• ucp_condition_h links UCX op with an external task scheduler
• Operation is performed after the given condition is satisfied

• CUDA/HIP stream execution reaches a certain point
• CUDA graph dependencies are satisfied
• Kernel triggers the operation

• APIs to create UCP condition variables:

ucs_status_t ucp_create_condition(
ucp_condition_h *condition,
ucp_condition_param_t *param);

ucs_status_t ucp_destroy_condition(
ucp_condition_h *condition);

• Condition context used as follows:
• STREAM – Input the stream handle
• GRAPH – Output graph node handle
• KERNEL_TRIGGERED – Output handle passed to triggering fn

typedef enum {
UCP_CONDITION_CATEGORY_STREAM,
UCP_CONDITION_CATEGORY_GRAPH,
UCP_CONDITION_CATEGORY_KERNEL_TRIGGERED

} ucp_condition_category_t;

typedef struct {
ucp_condition_category_t category,
void *context,
...

} ucp_condition_param_t;

typedef struct {
uint32_t       op_attr_mask;
uint32_t       flags;
void          *request;
…
/* UCP condition to be met before

initiating the operation */
ucp_condition_h condition;

} ucp_request_param_t;



UCP Example
Stream Synchronous Send NBX

ucs_status_ptr_t stream_send(..., cudaStream_t *cuda_stream)
{

ucp_condition_h condition;
ucp_condition_param_t cond_param = {

.category = UCP_CONDITION_CATEGORY_STREAM,

.context  = cuda_stream
};

status = ucp_create_condition(&cond_param, &condition);

ucp_request_param_t param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION,
.condition    = condition,
... 

};

status = ucp_tag_send_nbx(..., &param);
status = ucp_destroy_condition(&condition);
...

}

…

Send_nbx

cuda_stream



UCP Example
Graph Synchronous Broadcast NBX

ucs_status_ptr_t graph_bcast(cudaGraphNode_t *parent_node, cudaGraph_t *cuda_graph)
{

ucp_condition_h recv_cond, send1_cond, send2_cond;
ucp_condition_param_t recv_cparam = send1_cparam = send2_cparam = {

// Node will be returned through the context field
.category = UCP_CONDITION_CATEGORY_GRAPH

};

status = ucp_create_condition(&recv_cparam, &recv_cond);
status = ucp_create_condition(&send1_cparam, &send1_cond);
status = ucp_create_condition(&send2_cparam, &send2_cond);

ucp_request_param_t recv_param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION, .condition = recv_cond; };

ucp_request_param_t send1_param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION, .condition = send1_cond; };

ucp_request_param_t send2_param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION, .condition = send2_cond; };

status = ucp_tag_recv_nbx(..., &recv_param);
status = ucp_tag_send_nbx(..., &send1_param);
status = ucp_tag_send_nbx(..., &send2_param);

cudaGraphAddDependencies(*cuda_graph, send1_cparam.context, recv_cparam.context, 1);
cudaGraphAddDependencies(*cuda_graph, send2_cparam.context, recv_cparam.context, 1);
cudaGraphAddDependencies(graph, recv_cparam.context, parent_node, 1);
...

}

Parent

Recv

Send1 Send2



Stream Synchronous Wait Operation

• Existing ucp_request_query API is non-blocking

• Need blocking equivalent like MPI_Wait/MPI_Waitall to enforce dependencies

• Introduce request completion operations:
• Add “condition” field to ucp_request_attr_t

ucs_status_t ucp_request_wait( void ∗ request, ucp_request_attr_t ∗ attr ); 

ucs_status_t ucp_request_waitall( size_t nreq, void ∗requests, ucp_request_attr_t ∗attrs ); 

…

Send_nbx

cuda_stream

Wait

Kernel



UCT API Extension
Add Request Parameters to Support Condition

typedef struct {
...
ucs_cpu_set_t local_cpus;

/* Condition types that the MD can process */
uint64_t condition_types;

} uct_md_attr_v2_t;

UCT_INLINE_API ucs_status_t uct_ep_put_zcopy_nbx(uct_ep_h ep, const uct_iov_t *iov, size_t iovcnt,

uint64_t remote_addr, uct_rkey_t rkey,

uct_completion_t *comp, const uct_request_param_t *param)

{

return ep->iface->ops.ep_put_zcopy_nbx(ep, iov, iovcnt, remote_addr, rkey, comp, param);

}



Implementation Considerations

• Proxy Thread
• Can progress internal UCX state
• E.g. protocol selection, pipelines, etc.
• Cannot submit CUDA work while CUDA is

blocked on a task

• CUDA Host Callbacks
• Executed in arbitrary order
• Even more limited ability to make CUDA calls

• GPU “Verbs”
• GPU posts WQEs, rings DB, and polls the CQ
• Can reuse the same QPs for multiple streams/graphs
• Sharing between CPU/GPU comes with tradeoffs

• GPUDirect Async
• CPU posts WQEs, GPU rings doorbell and polls CQ
• Requires separate QPs per stream to deal with head

of line blocking on the QP
• Requires a serialization of graph into available QPs
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Protocol Simplification
Simplify/Resolve Control Plane to Enable Offloading

• Challenge: Protocol selection must be completed to enable 
optimizations and offloading

• Proposed “MPI_Prepare” function
• Resolve matching (first iteration)
• Resolve receiver ready (every iteration)
• Enables MPI_Pready to be implemented as RDMA write

• We could apply similar ideas in UCX:

ucs_status_t ucp_prepare_transfers(
ucp_ep_h ep, void *prepared_memh,
const ucp_buffer_param_t *param);

ucs_status_t ucp_release_preparations(
ucp_ep_h ep, void *prepared_memh);

MPI_Request req[2];
MPI_Prequest preq;
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
MPI_Prequest_create(req[0], MPI_INFO_NULL, &preq);
while (...) {
MPI_Startall(2, req);
MPI_Prepare_all(req, 2);
kernel<<<..., s>>>(..., preq);
MPI_Waitall(2, req);

}
MPI_Prequest_free(&preq);
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);
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Conclusions



Conclusions
Work in Progress, Feedback Appreciated

Benefits from stream/graph synchronous communication:
1. Eliminate overhead of GPU-CPU synchronization when CPU drives communication

• Better overlap of communication with computation
• Better ability to hide offloading overheads
• Can improve strong scaling efficiency

2. Improve programmability by including communication dependencies in the stream or graph

Several success stories, including NCCL, NVSHMEM, and LibMP
• CUDA graphs provide efficiency improvements over streams

MPI Forum investigating accelerator-integrated communication
• Stream/graph synchronous and kernel triggered (partitioned APIs)

Proposed UCX extension adds “condition” object
• Allows operations to be enqueued and managed by the CUDA runtime
• Efficient implementation requires separation of control and data planes
• Work in progress, feedback is greatly appreciated!
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Waitall

Kernel

Trigger_send
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