
Stream Synchronous Communication in UCX
Akshay Venkatesh, Sreeram Potluri, Jim Dinan, and Hessam Mirsadeghi
Acknowledgement to Yossi Itigin for UCX API Discussions

CPU Versus Stream Synchronous Communication
GPU Coordinates Data Dependencies Without CPU Involvement

Comm Sync
overheads

CPU

Kernel A, sbuf, stream

GPU

Kernel A

Comm

streamSync(stream)

Isend(sbuf)

Irecv(rbuf)

Waitall

GPU Sync
overheads

Kernel B, rbuf, stream

Kernel B

CPU

Kernel A, sbuf, stream

GPU

Kernel A

Comm

Isend(sbuf, stream)

Irecv(rbuf, stream)

Waitall(stream)

Kernel B, rbuf, stream

Kernel B

Isend/Irecv issued
from GPU stream

Waitall blocks
stream until
completed

GPU Integrated Communication Libraries

• Goals for today’s session:
• Discuss how to support GPU integrated communication (e.g. in Open MPI) on top of UCX
• Discuss how to enable best possible performance for UCX

• E.g. GPU SM integrated communication, GPUDirect Async, and other technologies

Stream
Synchronous

Graph
Synchronous

Kernel
Triggered

Kernel
Initiated Implementation

NCCL X X Proxy

NVSHMEM X X X Proxy or GIC

LibMP X X X GPUDirect Async

MPI Proposed Proposed Partitioned TBD

CUDA Streams and Graphs

Lessons Learned from LibMP

MPI Accelerator Extensions

UCX Stream Synchronous Communication APIs

Agenda

CUDA Streams and Graphs
Credit: Stephen Jones

6

CUDA STREAMS
GPU Work Submission Queues

A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A
A A A AA A A AA A A A

Dependency-based work

D

B C

E

FA
G

H

Dependencies
expressed as
CUDA streams

Hardware pops
top of any

available FIFO

A

B

C
wait(E)

F

G

wait(A)

D

E

wait(F)

H

Stream 1 Stream 2

Streams have implicit
submission-order dependencies

7

CUDA GRAPHS

CUDA Graphs can be captured from streams (or
explicitly constructed) and can be replayed multiple
times

Graphs can reduce overheads:

• Launch multiple kernels with one operation (host
overhead)

• Schedule work closer to GPU execution units
(device overhead)

Optimize Workflows and Reduce Launch Overheads

Graph of
Dependencies

End

A

B X

C D

E Y

streams can be
mapped to a

graph

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams

8

THREE-STAGE EXECUTION MODEL

Define

A

B X

C D

E Y

End

Single Graph “Template”

Instantiate

Multiple “Executable Graphs”

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

Execute

Executable Graphs
Running in CUDA Streams

s1 s2 s3

Created in host code
or built up from libraries

Snapshot of template
Sets up & initializes GPU

execution structures
(create once, run many times)

Concurrency in graph
is not limited by stream

9

WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

Launch Grid
Initialization 2µs Kernel

Grid
Initialization 2µs Kernel Grid

Initialization 2µs Kernel 53% Overhead

Breakdown of time spent during execution

10

WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

53% Overhead

Breakdown of time spent during execution

CPU-side launch overhead reduction

Launch Grid
Initialization 2µs Kernel

Grid
Initialization 2µs Kernel Grid

Initialization 2µs Kernel

46% Overhead

11

WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

53% Overhead

46% Overhead

37% Overhead

Breakdown of time spent during execution

CPU-side launch overhead reduction

Device-side execution overhead reduction

Launch Grid
Initialization 2µs Kernel

Grid
Initialization 2µs Kernel Grid

Initialization 2µs Kernel

26% shorter total time
with three 2µs kernels

LibMP Lessons Learned
Credit: Pak Markthub and Davide Rosetti

LibMP Overview
https://github.com/gpudirect/libmp

• LibMP is a lightweight messaging library
• Point-to-point and one-sided communications

• LibMP is a thin layer on top of GPUDirect Async
• No tags, no wildcards, no data types
• No synchronization protocol, e.g. back pressuring, credit exchange, ready to receive, etc.

• Intended to easily combine GPUDirect Async with GPUDirect RDMA

• Uses MPI as an out-of-band mechanism to bootstrap execution
• MPI is not used during actual communication

https://github.com/gpudirect/libmp

CUDA Interaction With External Depenencies

• Interaction with external dependencies through flags in CUDA accessible memory

1. Kernels
• Kernels can update and spin on flags
• Blocks any dependent work in the CUDA stream/graph

2. CUDA Memory Operations
• cuStreamWriteValue32/64 – Update a flag in CUDA accessible memory when execution reaches this task
• cuStreamWaitValue32/64 – Wait for a flag in CUDA accessible memory memory to satisfy condition

• Conditions: Equal, greater-or-equal, AND, NOR

LibMP on Stream

mp_isend_on_stream Network Stack
WQ

CQ

DB

Return reqObj

mp_wait_on_stream

CUDA Stream

Busy flag mp_wait

Set busy flag

Unset busy flag

Memops on stream

Prepare WQE

Memops on stream

Notify mlx5
Memops wait

Memops write

Memops write

LibMP on Graph
Prologue & Epilogue by GPU

mp-isend

mp-iwait

Graph Network Stack
WQ

CQ

DB

3. SM polls & sets CQ DBR

1. SM writes WQE

2. SM writes DB

• Put WQ, CQ, DBR on GPU memory for better
performance.

• Software stack is ready on Coral (P9).
• Need patches on other systems.

• QP is incompatible with ibverbs.

LIBMP PERFORMANCE ANALYSIS

• CPU sync:
• Communication from CPU, compute offloaded to GPU

• LibMP Stream:
• KernelOps version used, not StreamMemOps

• LibMP+Graphs vs. LibMP: clear gains [35,67]%
• LibMP+Graphs vs. CPU sync: [-37,30]%

• Gains from direct triggering via memory overwhelms the
communication kernel invocation overheads

0
50

100
150
200
250
300
350
400
450

1 2 4 8 16 32

La
te

nc
y

(u
se

c)

Stream count

Ping-pong Latency test (256B)

CPU Sync LibMP LibMP-Graph

CUDA 11.0, DGX 1V

Multi-stream ping-pong benchmark

Iter Start

SendRecv1

Compute1

SendRecv2

Compute2

SendRecv3

Compute3

SendRecvN

ComputeN

Iter Stop

CUDA Graph
with MP nodes

https://github.com/spotluri/libmp/blob/graphs/benchmarks/mp_pingpong_kernel_stream_latency.cu

Lessons Learned

• Simple protocols enable efficient integration of communication with CUDA
• Memory registration, matching, protocol progression, etc.
• Some simplifications (e.g. no crediting, rendezvous, etc.) hard for applications to adopt

• Overheads from enqueueing communication must be,
• Less than gains from directly triggering communication
• Minimized by enqueueing in batches (e.g. batch memOps)
• Hidden by overlapping with computation

• MemOp parallelism is limited by the number of FIFOs assigned to the CUDA context
• CUDA_DEVICE_MAX_CONNECTIONS - 1 to 32 (default is 8)

• Graphs can naturally resolve these issues:
1. Protocols – Declaring “persistent” communication ahead of time
2. Offloading overheads – Submitting graph to GPU as a single request
3. Parallelism – Scheduling dependencies close to GPU where greater parallelism is possible

MPI Accelerator Extensions

Accelerator Triggered Communication

Send/Recv data buffers are broken into equal-sized partitions

• MPI_Pready: mark partition as ready to send

• MPI_Parrived: query if partition has arrived

Partitioned operations match once in own matching space based on order of init calls

Using the MPI 4.0 Persistent Partitioned Communication API

MPI_Psend MPI_Precv

MPI_Pready

Kernel Triggered Communication Usage

Device Code

__global__ kernel(..., MPI_Prequest preq) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, preq);

}

Partitioned Neighbor Exchange

Host Code

MPI_Request req[2];
MPI_Prequest preq;
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
MPI_Prequest_create(req[0], MPI_INFO_NULL, &preq);
while (...) {

MPI_Startall(2, req);
kernel<<<..., s>>>(..., preq);
MPI_Waitall(2, req);

}
MPI_Prequest_free(&preq);
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

22

MPI STREAM TRIGGERED API PROPOSAL
Simple Ring Exchange

MPI_Request send_req;
MPI_Request recv_req;

for (i = 0; i < NITER; i++) {
if (i > 0) {
MPI_Wait_enqueue(recv_req, &rstatus, MPI_CUDA_STREAM, stream);
MPI_Wait_enqueue(send_req, &sstatus, MPI_CUDA_STREAM, stream);

}

kernel<<<..., stream>>>(send_buf, recv_buf, …);

if (i < NITER – 1) {
MPI_Irecv_enqueue(&recv_buf, …, recv_req, MPI_CUDA_STREAM, stream);
MPI_Isend_enqueue(&send_buf, …, send_req, MPI_CUDA_STREAM, stream);

}
}

kernel

Irecv

Isend

Wait

Wait

kernel

Irecv

Isend
…

stream

MPI-ACX
Prototype of Stream, Graph, and Kernel Triggered Operations

• Proxy thread issues communication
• Calls the triggered MPI function
• Uses one flag per operation in host registered memory

• Supports:
• Kernel triggered bindings for partitioned communication
• Stream/graph synchronous Isend, Irecv, and Wait

https://github.com/NVIDIA/mpi-acx

https://github.com/NVIDIA/mpi-acx

Proposed UCX Stream
Synchronous Communication APIs

Goals

1. UCX support for stream and graph synchronous communication
• Enqueue UCX operations on an external synchronization resource
• Communication is not initiated until dependencies are met
• Each stream is treated similarly to a separate thread

2. UCX support for kernel triggered communication
• Calls to MPI_Pready / MPI_Parrived on GPU

3. Simplify protocols to enable efficient implementaitons
• Do as much control/setup on CPU (e.g. memory mapping/registration) ahead of time
• Data transfers / RDMA ops triggered or performed by CUDA

4. Progress should be external to the GPU
• Accessing MPI internal state and advancing operations from GPU can be inefficient

Send_nbx

Recv_nbx

Waitall

Kernel

Trigger
Send_nbx

Stream A

UCP API Extension
Extend ucp_request_param_t with Condition

• ucp_condition_h links UCX op with an external task scheduler
• Operation is performed after the given condition is satisfied

• CUDA/HIP stream execution reaches a certain point
• CUDA graph dependencies are satisfied
• Kernel triggers the operation

• APIs to create UCP condition variables:

ucs_status_t ucp_create_condition(
ucp_condition_h *condition,
ucp_condition_param_t *param);

ucs_status_t ucp_destroy_condition(
ucp_condition_h *condition);

• Condition context used as follows:
• STREAM – Input the stream handle
• GRAPH – Output graph node handle
• KERNEL_TRIGGERED – Output handle passed to triggering fn

typedef enum {
UCP_CONDITION_CATEGORY_STREAM,
UCP_CONDITION_CATEGORY_GRAPH,
UCP_CONDITION_CATEGORY_KERNEL_TRIGGERED

} ucp_condition_category_t;

typedef struct {
ucp_condition_category_t category,
void *context,
...

} ucp_condition_param_t;

typedef struct {
uint32_t op_attr_mask;
uint32_t flags;
void *request;
…
/* UCP condition to be met before

initiating the operation */
ucp_condition_h condition;

} ucp_request_param_t;

UCP Example
Stream Synchronous Send NBX

ucs_status_ptr_t stream_send(..., cudaStream_t *cuda_stream)
{

ucp_condition_h condition;
ucp_condition_param_t cond_param = {

.category = UCP_CONDITION_CATEGORY_STREAM,

.context = cuda_stream
};

status = ucp_create_condition(&cond_param, &condition);

ucp_request_param_t param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION,
.condition = condition,
...

};

status = ucp_tag_send_nbx(..., ¶m);
status = ucp_destroy_condition(&condition);
...

}

…

Send_nbx

cuda_stream

UCP Example
Graph Synchronous Broadcast NBX

ucs_status_ptr_t graph_bcast(cudaGraphNode_t *parent_node, cudaGraph_t *cuda_graph)
{

ucp_condition_h recv_cond, send1_cond, send2_cond;
ucp_condition_param_t recv_cparam = send1_cparam = send2_cparam = {

// Node will be returned through the context field
.category = UCP_CONDITION_CATEGORY_GRAPH

};

status = ucp_create_condition(&recv_cparam, &recv_cond);
status = ucp_create_condition(&send1_cparam, &send1_cond);
status = ucp_create_condition(&send2_cparam, &send2_cond);

ucp_request_param_t recv_param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION, .condition = recv_cond; };

ucp_request_param_t send1_param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION, .condition = send1_cond; };

ucp_request_param_t send2_param = {
.op_attr_mask = ... | UCP_OP_ATTR_CONDITION, .condition = send2_cond; };

status = ucp_tag_recv_nbx(..., &recv_param);
status = ucp_tag_send_nbx(..., &send1_param);
status = ucp_tag_send_nbx(..., &send2_param);

cudaGraphAddDependencies(*cuda_graph, send1_cparam.context, recv_cparam.context, 1);
cudaGraphAddDependencies(*cuda_graph, send2_cparam.context, recv_cparam.context, 1);
cudaGraphAddDependencies(graph, recv_cparam.context, parent_node, 1);
...

}

Parent

Recv

Send1 Send2

Stream Synchronous Wait Operation

• Existing ucp_request_query API is non-blocking

• Need blocking equivalent like MPI_Wait/MPI_Waitall to enforce dependencies

• Introduce request completion operations:
• Add “condition” field to ucp_request_attr_t

ucs_status_t ucp_request_wait(void ∗ request, ucp_request_attr_t ∗ attr);

ucs_status_t ucp_request_waitall(size_t nreq, void ∗requests, ucp_request_attr_t ∗attrs);

…

Send_nbx

cuda_stream

Wait

Kernel

UCT API Extension
Add Request Parameters to Support Condition

typedef struct {
...
ucs_cpu_set_t local_cpus;

/* Condition types that the MD can process */
uint64_t condition_types;

} uct_md_attr_v2_t;

UCT_INLINE_API ucs_status_t uct_ep_put_zcopy_nbx(uct_ep_h ep, const uct_iov_t *iov, size_t iovcnt,

uint64_t remote_addr, uct_rkey_t rkey,

uct_completion_t *comp, const uct_request_param_t *param)

{

return ep->iface->ops.ep_put_zcopy_nbx(ep, iov, iovcnt, remote_addr, rkey, comp, param);

}

Implementation Considerations

• Proxy Thread
• Can progress internal UCX state
• E.g. protocol selection, pipelines, etc.
• Cannot submit CUDA work while CUDA is

blocked on a task

• CUDA Host Callbacks
• Executed in arbitrary order
• Even more limited ability to make CUDA calls

• GPU “Verbs”
• GPU posts WQEs, rings DB, and polls the CQ
• Can reuse the same QPs for multiple streams/graphs
• Sharing between CPU/GPU comes with tradeoffs

• GPUDirect Async
• CPU posts WQEs, GPU rings doorbell and polls CQ
• Requires separate QPs per stream to deal with head

of line blocking on the QP
• Requires a serialization of graph into available QPs

H
ig

he
r

Pe
rf

or
m

an
ce

,
Lo

w
er

 F
le

xi
bi

lit
y

Protocol Simplification
Simplify/Resolve Control Plane to Enable Offloading

• Challenge: Protocol selection must be completed to enable
optimizations and offloading

• Proposed “MPI_Prepare” function
• Resolve matching (first iteration)
• Resolve receiver ready (every iteration)
• Enables MPI_Pready to be implemented as RDMA write

• We could apply similar ideas in UCX:

ucs_status_t ucp_prepare_transfers(
ucp_ep_h ep, void *prepared_memh,
const ucp_buffer_param_t *param);

ucs_status_t ucp_release_preparations(
ucp_ep_h ep, void *prepared_memh);

MPI_Request req[2];
MPI_Prequest preq;
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
MPI_Prequest_create(req[0], MPI_INFO_NULL, &preq);
while (...) {
MPI_Startall(2, req);
MPI_Prepare_all(req, 2);
kernel<<<..., s>>>(..., preq);
MPI_Waitall(2, req);

}
MPI_Prequest_free(&preq);
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

33

Conclusions

Conclusions
Work in Progress, Feedback Appreciated

Benefits from stream/graph synchronous communication:
1. Eliminate overhead of GPU-CPU synchronization when CPU drives communication

• Better overlap of communication with computation
• Better ability to hide offloading overheads
• Can improve strong scaling efficiency

2. Improve programmability by including communication dependencies in the stream or graph

Several success stories, including NCCL, NVSHMEM, and LibMP
• CUDA graphs provide efficiency improvements over streams

MPI Forum investigating accelerator-integrated communication
• Stream/graph synchronous and kernel triggered (partitioned APIs)

Proposed UCX extension adds “condition” object
• Allows operations to be enqueued and managed by the CUDA runtime
• Efficient implementation requires separation of control and data planes
• Work in progress, feedback is greatly appreciated!

Send_nbx

Recv_nbx

Waitall

Kernel

Trigger_send

Stream A

