
© 2022 Arm

Luis E. Peña
21 September 2022

Bring the BitCODE:
Moving Compute and 
Data in Distributed 
Heterogeneous Systems
UCF Annual Meeting 2022



2 © 2022 Arm

Who?

Wenbin Lü
Stony Brook

Luis E. Peña
Arm Research

Pavel Shamis
Nvidia

Valentin Churavy
MIT

Steve Poole
LANL

Barbara Chapman
Stony Brook



3 © 2022 Arm

GPU + Network

TPU + Network

Switch + Compute

FPGA + Network

Network + ComputeNetwork + Storage

Storage + Compute

AWS Nitro

5G + GPU + Ethernet

Moving processing elements closer to the data



4 © 2022 Arm

Motivation

- Target heterogeneous devices on the network
- DPU (Data Processing Units)
- CSD (Computational Storage Devices)

- Devices have typically: Limited storage, connected through RDMA capable 
interconnect

- How do we program these devices:
- Preload binary
- Over the network



5 © 2022 Arm

Socket

Socket

Socket

C
C

C
C

C
C

C
C

C
C

C
C

N
A
i

A

N
i

N
A
i

A

N
i

C C

C
C

C
C

C C
C
C

C
C

C C

CC

N
A
i
N

A

N
i

A

C
C

C
C

C C

CC

A

N
i

A

A

N
i

A

C
C

C
C

C C

CC

A

N
i

A

A

N
i

A

CN
C

C

i
AN

NCi

C

CA

Complexity of programmability, deployment, debug, and management 

Single Socket Multi-Socket Multi-Core & 
Socket

Multi-Core & 
Socket & 
Accelerators

Multi-Core & 
Chiplets & Socket 
& Accelerators

Datacenter & Edge 
Becoming New 
Unit of Compute

Complexity of Modern Distributed Systems



6 © 2022 Arm

The Two-Chains Framework
Framework underpinning the ifunc API

• Provides packaging, transfer and execution of functions on local and remote processes
○ Functions are loaded as dynamic libraries
○ Messages contain binary code and data

• Fast, lightweight and portable
○ Low latency & high throughput
○ Functions are written in regular C code
○ Works on CPUs, DPUs and CSDs

• Extension of the UCX framework 
○ Two-Chains leverages UCP put semantics

Two-Chains: High Performance Framework for Function Injection and Execution, IEEE CLUSTER 2021
Authors: Megan Grodowitz, Luis E. Peña, Curtis Dunham, Dong Zhong, Pavel Shamis & Steve Poole

UCX Programming Interface for Remote Function Injection and Invocation, OpenSHMEM 2021
Authors: Luis E. Peña, Wenbin Lü, Pavel Shamis & Steve Poole

Bring the BitCODE -- Moving Compute and Data in Distributed Heterogeneous Systems, IEEE CLUSTER 2022 (this work)
Authors: Wenbin Lü, Luis E. Peña, Pavel Shamis, Valentin Churavy, Barbara Chapman & Steve Poole



7 © 2022 Arm

Where ifunc fits

Source: https://openucx.org/

ifunc



8 © 2022 Arm

ifunc Basics
• A C/Julia function is compiled and shipped to a remote process in the form of an ifunc

message

• The message also contains a set of arguments (aka payload) for the ifunc

• The ifunc can access code and/or data on the target process (target_args)
○ The target arguments are passed to the function by the target process
○ The ifunc can invoke local functions on the target



9 © 2022 Arm

Bring the Bitcode! (Three-Chains)

Extending the Two-Chains ifunc work by:

● Removing the need of the shared library to be present on the target
● Using LLVM bitcode as an intermediate format
● Caching the bitcode
● Demonstrating that the approach is extendable to a high-level dynamic language 

Julia



10 © 2022 Arm

Dynamically typed, high-level syntax

Open-source, permissive license

Built-in package manager

Interactive development

Julia: Yet another high-level language?

julia> function mandel(z)
c = z
maxiter = 80
for n = 1:maxiter

if abs(z) > 2
return n-1

end
z = z^2 + c

end
return maxiter

end

julia> mandel(complex(.3, -.6))
14



11 © 2022 Arm

Typical features

Dynamically typed, high-level syntax

Open-source, permissive license

Built-in package manager

Interactive development

Julia: Yet another high-level language?

Unusual features

Great performance!

JIT AOT-style compilation

Most of Julia is written in Julia

Reflection and metaprogramming



12 © 2022 Arm

Et tu Julia?

1. JIT compiler based on LLVM

2. UCX bindings

3. Used in HPC & ML, may open up interesting applications

4. Demonstrates generality (and limitations) of our approach.



13 © 2022 Arm

Sample Julia ifunc
function init(source_args::Ptr{Cvoid}, source_args_size::Csize_t,

payload::Ptr{Cvoid}, payload_size::Csize_t)::Cint
result_src = Base.unsafe_convert(Ptr{UInt64}, source_args)
result_pay = Base.unsafe_convert(Ptr{UInt64}, payload)

Base.unsafe_store!(result_pay, Base.unsafe_load(result_src))

return Cint(0)
end

function main(payload::Ptr{Cvoid}, payload_size::Csize_t,
target_args::Ptr{Cvoid})::Cvoid

result_pay = Base.unsafe_convert(Ptr{UInt64}, payload)
result_tgt = Base.unsafe_convert(Ptr{UInt64}, target_args)

Base.unsafe_store!(result_tgt, Base.unsafe_load(result_pay))

return nothing
end



14 © 2022 Arm

Three-Chains workflow



15 © 2022 Arm

Binary based ifunc

1. Compile program to shared library
2. Load shared object and pack it into the binary section
3. Perform run-time symbol resolution on remote system / remote dynamic linking

Issues:
- Architecture dependent
- Remote-dynamic linking is complicated and must be implemented for each target



16 © 2022 Arm

Could we not just send source-code?

Instead of sending over shared-object file we could send the source-code

1. Julia’s Distributed.jl actually does so.
2. Complicated for C

a. Need a compiler present
b. Headers/source code are not trivial to locate & large
c. Much higher initial latency



17 © 2022 Arm

Heterogenous bitcode

1. Use LLVM bitcode as a serialization format
2. Allows easily for multiple-architectures to be present
3. LLVM ORC JIT compiles bitcode to machine code and performs linking

a. Also performs symbol resolution for us
b. DEPS: Contains names of libraries we should load beforehand



18 © 2022 Arm

Self propagation / caching

- Compile ifunc once
- Send across the network
- “Fat” bitcode — for each target architecture
- Myth of the target-independent LLVM bitcode

- Clang generates-target specific IR
- LLVM optimization use target information to choose vector width etc

- Latency trade-offs
- Send binary
- Send late-opt bitcode
- Send pre-opt bitcode
- Send source code



19 © 2022 Arm

Caching



20 © 2022 Arm

Integration

AST

IR

xPU back end

Effective Extensible Programming: Unleashing Julia on 
GPUs (doi:10.1109/TPDS.2018.2872064)

CPU GPU

GPU

20

1. Julia is loaded on all targets 

2. Reusing Julia GPUCompiler to collect a LLVM 
module containing the IFunc

3. Using UCX.jl to setup program and IFunc/s

Caveats:
1. Julia currently doesn’t have support for cross-

compilation. 

2. Set of Julia constructs in IFuncs are limited
a. No dynamic-dispatch
b. Runtime interactions are supported

3. Julia can be too aggressive and embed 
pointers to global data into generated IR.

https://dx.doi.org/10.1109/TPDS.2018.2872064


21 © 2022 Arm

Benchmark — Pointer chase

0

1

2

1

4

0

6

7

8

5

8

6

Shard 1 Shard 3

3

4

5

7

3

2

Shard 2

Parameters:
- Number of shards
- Depth (length of chase)

1. Random (but consistent across runs) initialization
2. Local work (orange), remote work (red)
3. Number of network jumps is important



22 © 2022 Arm

Benchmark — Pointer chase

Three different conditions:

1. Pseudo-AM (Active message)
Pre-installed function on target side — as if code was already present

2. RDMA GET
Client process loads values via RDMA GET — no local work possible

3. ifunc based
Dynamically propagated and JIT compiled/linked



23 © 2022 Arm

Test machines

- Thor 36-node Cluster (hosted by the HPC Advisory Council)
- Dual Socket Intel Xeon 16-core CPUs E5-2697A with 256GB DDR4 memory
- ConnectX-6 HDR 100Gb/s InfiniBand
- BlueField-2 HDR 100Gb/s DPU

- 8x Arm Cortex-A72 with 16GB DDR4 memory
- Configurations

- Xeon Client + BF2 Server
- Xeon Client + Xeon Server

- Ookami 174-node Cluster (hosted by Stony Brook University)
- 48-core Fujitsu A64FX FX600 with 32GB HBM memory
- ConnectX-6 HDR 100Gb/s InfiniBand



24 © 2022 Arm

Results: Xeon-BF vs Xeon 

Thor 32-Server C/C++ 
(Xeon Client and BF2 Servers)

Thor 16-Server C/C++
(Xeon Client and Servers)

Varying depth



25 © 2022 Arm

Results: Xeon-BF vs A64FX

Thor 32-Server C/C++
(Xeon Client and BF2 Servers)

Ookami 64-Server C/C++
(A64FX Client and Servers)



26 © 2022 Arm

Results: Julia 

Thor 32-Server C/C++
(Xeon Client and BF2 Servers)

Thor 32-Server Julia
(Xeon Client and BF2 Servers)



27 © 2022 Arm

Results: Xeon-BF2 vs Xeon

Thor 4096-Depth C/C++
(Xeon Client and BF2 Servers)

Thor 4096-Depth C/C++
(Xeon Client and Servers)



28 © 2022 Arm

Results: Xeon-BF2 vs A64FX

Thor 4096-Depth C/C++
(Xeon Client and BF2 Servers)

Ookami 4096-Depth C/C++
(A64FX Client and Servers)



29 © 2022 Arm

Results: Julia

Thor 4096-Depth C/C++
(Xeon Client and BF2 Servers)

Thor 4096-Depth Julia
(Xeon Client and BF2 Servers)



30 © 2022 Arm

TSI Overhead breakdown (Thor BF2)



31 © 2022 Arm

Conclusion / Next steps 

- Bitcode propagation over the network
- Fast programming of network attached heterogeneous resources

- Can we extend this to AWS Lambda/Serverless like architectures

- Security: WASM/eBPF
- Initial prototype inside UCX: Next step separate library 
- Explore range of choices: 

- Pre-opt for computational intensive
- PIC object-files for latency sensitive work.

Improved static/cross compilation for Julia



© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध�वाद

Kiitos
شكرًا

ধনয্বাদ
תודה



33 © 2022 Arm

Bonus slides



34 © 2022 Arm

More on UCX



© 2022 Arm

The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks


	Bring the BitCODE:�Moving Compute and Data in Distributed Heterogeneous Systems
	Who?
	Slide Number 3
	Motivation
	Complexity of Modern Distributed Systems
	The Two-Chains Framework
	Where ifunc fits
	ifunc Basics
	Bring the Bitcode! (Three-Chains)
	Julia: Yet another high-level language?
	Julia: Yet another high-level language?
	Et tu Julia?
	Sample Julia ifunc
	Three-Chains workflow
	Binary based ifunc
	Could we not just send source-code?
	Heterogenous bitcode
	Self propagation / caching
	Caching
	Integration
	Benchmark — Pointer chase
	Benchmark — Pointer chase
	Test machines
	Results: Xeon-BF vs Xeon 
	Results: Xeon-BF vs A64FX
	Results: Julia 
	Results: Xeon-BF2 vs Xeon
	Results: Xeon-BF2 vs A64FX
	Results: Julia
	TSI Overhead breakdown (Thor BF2)
	Conclusion / Next steps 
	Slide Number 32
	Bonus slides
	More on UCX
	Slide Number 35

