
Peter Entschev (NVIDIA)

 September 20th, 2022

UCX-Py: C++ Backend

2

UCX-Py

• Python interface for UCX

• Provides sync and async APIs

• Simple replacement for Python communications (e.g., sockets)

• Targeted at library and framework developers

• No low-level communications, UCX or C knowledge required

• Made available to users (e.g., data scientists) via frameworks such as Dask

Introduction

3

UCX-Py in Dask
RAPIDS GPU-BDB

Dask task stream with Python sockets
(Red is communication)

Dask task stream with UCX-Py
(Red is communication)

4

C++ Backend

• Improve performance of small messages

• Existing UCX-Py Cython implementation does not support multithreading

• Cython is great, but has shortcomings

○ Code can be more complex than pure C++

○ Does not expose complete standard library

• Provide seamless integration with object-oriented applications without wrappings

• Attract more developers for object-oriented languages

○ Object-oriented in C++ / shim layer to high-level language

• Currently nicknamed "UCXX" (subject to change)

Motivation

5

UCXX
Motivation: Python Asyncio Overhead

import asyncio, time

async def noop():
 pass

async def cpu_task():
 t0 = time.time()
 for _ in range(1000000):
 await asyncio.create_task(noop())
 t1 = time.time()
 print(t1-t0)

await cpu_task()

11.78263521194458

import time

async def noop():
 pass

async def cpu_coro():
 t0 = time.time()
 for _ in range(1000000):
 await noop()
 t1 = time.time()
 print(t1-t0)

await cpu_coro()

0.14650940895080566

11.78263521194458 / 0.14650940895080566 = ~80x!

Source: https://stackoverflow.com/a/55766474

https://stackoverflow.com/a/55766474

6

UCXX

● Asyncio is a large source of overhead
○ Up to 170x slower compared to sync code

(https://stackoverflow.com/a/55766474)
● Thousands of small tasks (e.g., small

message transfers) add to total runtime

Motivation: Python Overhead

● Some of possible solutions:
○ Reducing total number of tasks
○ Reducing overhead of asyncio tasks (is it

even possible?)
○ Replacing asyncio by something more

efficient (uvloop, Trio, etc.)
○ Potentially others?

https://stackoverflow.com/a/55766474

7

UCXX Optimizations

• UCX worker thread

• Delayed submission of message transfers

• Direct notification of Python futures from C++

• Python multi-buffer transfers

Summary

8

UCXX Optimizations

• Spawn separate thread to progress the UCP worker

• State of UCXX requests is set by the thread

• May progress the worker continuously or in event-based mode

UCP Worker Progress Thread

9

UCXX Optimizations

• Postpone all message transfers to the UCP worker progress thread

• Remove all overhead from calling thread

Delayed Submission

10

UCXX Optimizations
Delayed Submission - Simple Sequence Diagram

11

UCXX Optimizations
Delayed Submission - Complex Sequence Diagram

12

UCXX Optimizations

• Separate Python thread sharing event loop with application thread

• Awakes when a UCP request completes

• Notifies a Python future

• Avoids Python GIL acquisition from worker progress function

• GIL required only for shortest possible period when notifying future

Python Notifier Thread

13

UCXX Optimizations
Python Notifier Thread

14

UCXX Optimizations
Python Notifier Thread

15

UCXX Optimizations

• Only one Python future to be waited per operation, regardless of number of buffers

• Allow sending a list of buffers in a single send operation

• Receive a list of buffers in a single recv operation

○ User doesn't know anything about the content (size, type) beforehand

○ Buffers are allocated by the implementation at receive time

• Memory allocation

○ Host: C malloc()/free()

○ CUDA: rmm::device_buffer

Python Multi-Buffer Transfers

16

Message Transfer in Python
● Small transfers in Python are slow
● Native Performance gap ~10 (Tornado vs UCX)

Dask does a lot of small transfers (< 1KB), e.g.:
○ Data sizes and number of frames
○ Heartbeart

● Flat latency for small transfers
○ Dominated by implementation overhead

17

Message Transfer in Dask
● Using new UCXX implementation to reduce overhead by:

○ Decreasing total number of asyncio tasks (multi-buffer
transfers)

○ Decreasing blocking tasks in event loop (delayed
submission)

● Wall-clock can be reduced by reducing general overhead
(when dominated by short-lived tasks, e.g., small transfers)

18

UCXX API
C++

// UCP Context

std::shared_ptr<ucxx::Context> context = ucxx::createContext();

// UCP Worker

std::shared_ptr<ucxx::Worker> worker = context->createWorker();

auto worker = context->createWorker();

std::shared_ptr<ucxx::Worker> worker = ucxx::createWorker(context);

auto worker = ucxx::createWorker(context);

// UCP Listener

std::shared_ptr<ucxx::Listener> listener = worker->createListener(13337, listenerCallback, listenerCallbackArg);

// UCP Endpoint

std::shared_ptr<ucxx::Endpoint> ep = worker->createEndpointFromHostname("127.0.0.1", 13337);

std::shared_ptr<ucxx::Endpoint> ep = worker->createEndpointFromWorkerAddress(worker->getAddress());

std::shared_ptr<ucxx::Endpoint> ep = listener->createEndpointFromConnRequest(connRequest);

19

UCXX API
C++ (Cont.)

// Tag transfer

std::shared_ptr<ucxx::Request> tagSendReq = ep->tagSend(sendPtr, sendBytes, 0);

std::shared_ptr<ucxx::Request> tagRecvReq = ep->tagRecv(recvPtr, recvBytes, 0);

// Stream transfer

std::shared_ptr<ucxx::Request> streamSendReq = ep->streamSend(sendPtr, sendBytes);

std::shared_ptr<ucxx::Request> streamRecvReq = ep->streamRecv(recvPtr, recvBytes);

// Request methods

bool isCompleted = transferReq->isCompleted();

transferReq->checkError();

ucs_status_t transferStatus = transferReq->getStatus();

transferReq->cancel();

20

UCXX API
C++ Sample

void local_send_recv() {

 std::shared_ptr<ucxx::Context> context = ucxx::createContext();

 std::shared_ptr<ucxx::Worker> worker = context->createWorker();

 worker->startProgressThread();

 auto ep1 = worker->createEndpointFromWorkerAddress(worker->getAddress());

 auto ep2 = worker->createEndpointFromWorkerAddress(worker->getAddress());

 std::vector<int> send{0, 1, 2, 3, 4, 5, 6, 7};

 std::vector<int> recv(send.size());

 std::vector<std::shared_ptr<ucxx::Request>> requests{

 ep1->tagSend(send.data(), send.size() * sizeof(int), 0),

 ep2->tagRecv(recv.data(), recv.size() * sizeof(int), 0)

 }

 waitRequests(worker, requests);

}

21

UCXX API
Python Core Sample

def local_send_recv():

 ctx = ucx_api.UCXContext()

 worker = ucx_api.UCXWorker(ctx)

 worker.start_progress_thread()

 ep1 = ucx_api.UCXEndpoint.create_endpoint_from_worker_address(worker, ucx_api.UCXAddress.from_worker(worker))

 ep2 = ucx_api.UCXEndpoint.create_endpoint_from_worker_address(worker, ucx_api.UCXAddress.from_worker(worker))

 send_msg = np.arange(8, dtype=np.int32)

 recv_msg = np.empty(8, dtype=np.int32)

 requests = [ep1.tag_send(send_msg, tag=0), ep2.tag_recv(recv_msg, tag=0)]

 wait_requests(worker, requests)

22

UCXX API
Python Async Sample

def local_send_recv_async():

 ep1 = await ucp.create_endpoint_from_worker_address(ucp.get_worker_address())

 ep2 = await ucp.create_endpoint_from_worker_address(ucp.get_worker_address())

 send_msg = np.arange(8, dtype=np.int32)

 recv_msg = np.empty(8, dtype=np.int32)

 await asyncio.gather(ep1.send(send_msg, tag=0, force_tag=True), ep2.recv(recv_msg, tag=0, force_tag=True))

23

UCXX API
Python Async Sample - Multi-Buffer

def local_send_recv_multi_async():

 ep1 = await ucp.create_endpoint_from_worker_address(ucp.get_worker_address())

 ep2 = await ucp.create_endpoint_from_worker_address(ucp.get_worker_address())

 send_msg = [np.arange(8, dtype=np.int32) for i in range(8)]

 _, recv_msg = await asyncio.gather(ep1.send_multi(send_msg, tag=0, force_tag=True), ep2.recv_multi(tag=0, force_tag=True))

24

UCXX State and Availability

• Requires C++17 (C++14 possible if needed, but without CUDA Python support)

• Parts of UCX-Py still unimplemented (parts of ucp_address, RMA, AM)

• Missing parts of documentation

• Missing CMake support

• Thorough code review pending

• Still undecided whether this will be merged into UCX-Py repo or entirely new project

• Will be made available late 2022 (schedule permitting)

THANK YOU

Peter Entschev (NVIDIA), pentschev@nvidia.com

mailto:pentschev@nvidia.com

