‘
. ® <« // S
-

€ . ST, - SN
? ‘ .

. '

>
1
v - y ~
<ANVIDIA. *
- . - -

UCX-Py: C++ Backend A
Peter Entschev (NVIDIA)

September 20th, 2022
L4

UCX-Py

Python interface for UCX

Provides sync and async APIs

Simple replacement for Python communications (e.g., sockets)
Targeted at library and framework developers

No low-level communications, UCX or C knowledge required

Made available to users (e.g., data scientists) via frameworks such as Dask

2 NVIDIA.

RAPIDS GPU-BDB

UCX-Py in Dask

e Lt Ll sl ikt rell s L

- et e
l; nr.'lihn'k.‘.“ulll"u'ﬁn‘.lvd. |x

Dask task stream with UCX-Py

Dask task stream with Python sockets

(Red is communication)

(Red is communication)

<ANVIDIA.

3

C++ Backend

Improve performance of small messages
Existing UCX-Py Cython implementation does not support multithreading
Cython is great, but has shortcomings
o Code can be more complex than pure C++
o Does not expose complete standard library
Provide seamless integration with object-oriented applications without wrappings
Attract more developers for object-oriented languages
o Object-oriented in C++ / shim layer to high-level language

Currently nicknamed "UCXX" (subject to change)

4 NVIDIA.

Motivation:

import asyncio, time

async def noop():
pass

async def cpu task():
t0 = time.time ()
for in range(1000000):
await asyncio.create_task (noop())
tl = time.time ()
print (t1-t0)

await cpu_task()

11.78263521194458

UCXX

Python Asyncio Overhead

import time

async def noop():
pass

async def cpu coro():
t0 = time.time ()

for in range(1000000):

await noop()
tl = time.time ()
print (tl1-t0)

await cpu_coro()

0.14650940895080566

11.78263521194458 / 0.14650940895080566 = ~80x!

Source: https://stackoverflow.com/a/55766474

5

<ANVIDIA.

https://stackoverflow.com/a/55766474

UCXX

Asyncio is a large source of overhead Some of possible solutions:
Up to 170x slower compared to sync code Reducing total number of tasks
) Reducing overhead of asyncio tasks (is it
Thousands of small tasks (e.g., small even possible?)

Replacing asyncio by something more
efficient (uvloop, Trio, etc.)
Potentially others?

message transfers) add to total runtime

6 NVIDIA.

https://stackoverflow.com/a/55766474

UCXX Optimizations

UCX worker thread
Delayed submission of message transfers
Direct notification of Python futures from C++

Python multi-buffer transfers

7 NVIDIA.

UCXX Optimizations

e Spawn separate thread to progress the UCP worker
« State of UCXX requests is set by the thread

e May progress the worker continuously or in event-based mode

8 NVIDIA.

UCXX Optimizations

e Postpone all message transfers to the UCP worker progress thread

« Remove all overhead from calling thread

9 NVIDIA.

UCXX Optimizations

Delayed Submission - Simple Sequence Diagram

Application Thread (Python) Worker Thread Submission Pool

Register Submission S1 (Eager)

v

Register Submission S2 (RNDV)

v

Read All Submissions
Dispatch S1 (Immediate Completion)

Notify Completion S1

A

Dispatch S2 (Enqueued for Progress)
ucp_worker_progress (S2 completes)

Notify Completion S2

A

Application Thread (Python) Worker Thread Submission Pool

10 <ANVIDIA.

UCXX Optimizations

Delayed Submission - Complex Sequence Diagram

Application Thread Worker Thread Submission Pool

Register Submission S1 (RNDV)

Register Submission S2 (Eager)

Register Submission S3 (RNDV)

Read All Submissions

Dispatch S1 (Enqueued for Progress)
Dispatch S2 (Immediate Completion)

Register Submission S4 (RNDV)

Notify Completion S2

Dispatch S3 (Enqueued for Progress)
ucp_worker_progress (S3 completes)

Notify Completion S3

A

Read All Submissions
Dispatch S4 (Enqueued for Progress)
ucp_worker_progress (S1 and S4 complete)

Notify Completion S4

Notify Completion $1

A

Application Thread Worker Thread Submission Pool

11

<ANVIDIA.

UCXX Optimizations

Separate Python thread sharing event loop with application thread
Awakes when a UCP request completes

Notifies a Python future

Avoids Python GIL acquisition from worker progress function

GIL required only for shortest possible period when notifying future

12 NVIDIA.

UCXX Optimizations

Python Notifier Thread

Event Loop Application Thread (Python) Notifier Thread (Python)

Create

Register Event Loop

»

Dispatch Request (Immediate Completion)

Future::notify()

»

Awake: waitRequestNotifier()

Notify: runRequestNotifier()

Event Loop Application Thread (Python) Notifier Thread (Python)

Worker Thread (C++)

Worker Thread (C++)

13

<ANVIDIA.

UCXX Optimizations

Python Notifier Thread

Event Loop Application Thread (Python) Notifier Thread (Python) Worker Thread (C++)

Create

A

Register Event Loop

Dispatch Request
Progress
Future::notify()
<
Awake: waitRequestNotifier()
Notify: runRequestNotifier()
«
Event Loop Application Thread (Python) Notifier Thread (Python) Worker Thread (C++)

14 <ANVIDIA.

UCXX Optimizations

Only one Python future to be waited per operation, regardless of number of buffers
Allow sending a list of buffers in a single send operation
Receive a list of buffers in a single recv operation
o User doesn't know anything about the content (size, type) beforehand
o Buffers are allocated by the implementation at receive time
Memory allocation
o Host: Cmalloc()/free()
o CUDA: rmm: :device buffer

15 NVIDIA.

Bandwidth (B/s)

10°

107

10°

10°

10¢

Message Transfer in Python

Small transfers in Python are slow

Native Performance gap ~10 (Tornado vs UCX)

Dask does a lot of small transfers (< 1KB), e.g.:
Data sizes and number of frames
Heartbeart

TCP Host Transfer Bandwidth

— UCX
UCXX Core
UCX-Py Core
UCXX Async
UCX-Py Async
Tornado

[1]

T T T T T
10! 10° 10° 107 10°

Size (B)

Latency (us)

Flat latency for small transfers
Dominated by implementation overhead

TCP Host Transfer Latency

— UCX

UCXX Core
UCX-Py Core
UCXX Async
UCX-Py Async
Tornado

[1]

T T T T
10! 10° 10° 107

Size (B)

16

T
10°

<A NVIDIA.

Avg Bandwidth (B/s)

Message Transfer in Dask

Using new UCXX implementation to reduce overhead by:
Decreasing total number of asyncio tasks (multi-buffer
transfers)

Decreasing blocking tasks in event loop (delayed
submission)

Dask cuDF Merge Bandwidth: 8 devices

—— UCXX: Multi/Delayed/Future
UCX-Py

W
Chunk Size (million rows)

Avg Wall Clock (s)

x 107!

x107?

x107*

Wall-clock can be reduced by reducing general overhead

(when dominated by short-lived tasks, e.g., small transfers)

Dask cuDF Merge Wall Clock: 8 devices

—— UCXX: Multi/Delayed/Future
UCX-Py

10°

W
Chunk Size (million rows)

<ANVIDIA.

UCXX API
C++

// UCP Context

std::shared ptr<ucxx::Context> context = ucxx::createContext();

// UCP Worker

std::shared ptr<ucxx::Worker> worker = context->createWorker();
auto worker = context->createWorker() ;

std::shared ptr<ucxx::Worker> worker = ucxx::createWorker (context) ;

auto worker = ucxx::createWorker (context) ;

// UCP Listener

std::shared ptr<ucxx::Listener> listener = worker->createListener (13337, listenerCallback, listenerCallbackArg) ;

// UCP Endpoint

worker->createEndpointFromHostname ("127.0.0.1", 13337);

std: :shared ptr<ucxx::Endpoint> ep

std: :shared ptr<ucxx::Endpoint> ep worker->createEndpointFromWorkerAddress (worker->getAddress()) ;

listener->createEndpointFromConnRequest (connRequest) ;

std: :shared ptr<ucxx::Endpoint> ep

18 <ANVIDIA.

UCXX API
C++ (Cont.)

// Tag transfer

std: :shared ptr<ucxx::Request> tagSendReq ep->tagSend (sendPtr, sendBytes, 0);

std: :shared ptr<ucxx::Request> tagRecvReq = ep->tagRecv(recvPtr, recvBytes, 0);

// Stream transfer

std: :shared ptr<ucxx::Request> streamSendReq ep->streamSend (sendPtr, sendBytes) ;

std: :shared ptr<ucxx::Request> streamRecvReq ep->streamRecv (recvPtr, recvBytes) ;
// Request methods

bool isCompleted = transferReqg->isCompleted() ;

transferReqg->checkError() ;

ucs_status_t transferStatus = transferReg->getStatus();

transferReqg->cancel () ;

19 <A NVIDIA.

UCXX API

C++ Sample

void local_ send recv() {
std::shared ptr<ucxx::Context> context = ucxx::createContext();
std::shared ptr<ucxx::Worker> worker = context->createWorker();

worker->startProgressThread() ;

auto epl worker->createEndpointFromWorkerAddress (worker->getAddress()) ;

auto ep2 worker->createEndpointFromWorkerAddress (worker->getAddress()) ;
std: :vector<int> send{0O, 1, 2, 3, 4, 5, 6, 7};

std: :vector<int> recv(send.size())

std::vector<std::shared ptr<ucxx::Request>> requests({
epl->tagSend(send.data(), send.size() * sizeof(int), 0),
ep2->tagRecv (recv.data(), recv.size() * sizeof(int), 0)

}

waitRequests (worker, requests)

} 20 <ANVIDIA.

UCXX API

def local_send recv():
ctx = ucx_api.UCXContext()
worker = ucx api.UCXWorker (ctx)

worker.start progress_ thread()

epl = ucx_api.UCXEndpoint.create endpoint from worker address(worker, ucx api.UCXAddress.from worker (worker))
ep2 = ucx_api.UCXEndpoint.create endpoint from worker address(worker, ucx api.UCXAddress.from worker (worker))
send msg = np.arange (8, dtype=np.int32)

recv_msg = np.empty (8, dtype=np.int32)

requests = [epl.tag send(send msg, tag=0), ep2.tag recv(recv_msg, tag=0)]

wait_ requests (worker, requests)

21 <2 NVIDIA.

UCXX API

def local_send recv_async():

epl await ucp.create_endpoint from worker address(ucp.get worker address())

ep2 await ucp.create_endpoint from worker address(ucp.get worker address())

send msg np.arange (8, dtype=np.int32)

recv_msg np.empty (8, dtype=np.int32)

await asyncio.gather (epl.send(send msg, tag=0, force_tag=True), ep2.recv(recv_msg, tag=0, force tag=True))

22 <2 NVIDIA.

UCXX API

Python Async Sample - Multi-Buffer

def local send recv_multi_async():

epl await ucp.create_ endpoint from worker address(ucp.get worker address())

ep2 await ucp.create_endpoint from worker address(ucp.get worker address())

send msg = [np.arange (8, dtype=np.int32) for i in range(8)]

_, recv_msg = await asyncio.gather (epl.send multi (send msg, tag=0, force_ tag=True), ep2.recv_multi(tag=0, force_ tag=True))

23 <ANVIDIA.

UCXX State and Availability

Requires C++17 (C++14 possible if needed, but without CUDA Python support)

Parts of UCX-Py still unimplemented (parts of ucp_address, RMA; AM)

Missing parts of documentation

Missing CMake support

Thorough code review pending

Still undecided whether this will be merged into UCX-Py repo or entirely new project

Will be made available late 2022 (schedule permitting)

24

NVIDIA.

. //‘x" -
Q. ~ = ~ V~

THANK YOU AR S . SN

\ N ! { v‘ =\
. \ y } 7 4 Ve
AV G \

o
- _ 4
N

Peteg Entschev (NVIDIA}, pentschev@nvidia.com

<A NVIDIA. X A

mailto:pentschev@nvidia.com

