
Yossi Itigin, UCF workshop 2021

UCX PROTOCOLS

2

ISSUES WITH CURRENT UCP PROTOCOLS

- Scattered and complicated logic for protocol and thresholds selection

- No support for protocol selection per memory type / locality

- For non-inline case: many data-path checks for message size, datatype, memory type

- Bad handling of endpoint configuration change while send operation is inflight

- Incomplete handling of “aborting” send requests in case of endpoint error

- Can’t reuse common code (e.g multi-rail) between protocols

3

ISSUES WITH CURRENT UCP PROTOCOLS

- Scattered and complicated logic for protocol and thresholds selection

- No support for protocol selection per memory type / locality

- For non-inline case: many data-path checks for message size, datatype, memory type

- Bad handling of endpoint configuration change while send operation is inflight

- Incomplete handling of “aborting” send requests in case of endpoint error

- Can’t reuse common code (e.g multi-rail) between protocols

4

SOLUTION APPROACH

- Separate protocol definition from protocol selection engine

- Generate protocol cutoff values in a generic way

- Create a “protocol selection key” based on operation properties:

- Operation, datatype, memory type, memory locality, extra flags

- UCP endpoint and R-key point to protocol selection hash table

- Similar endpoints/rkeys share the table

- Protocol hash table entries are initialized on first use

- A send operation creates selection key, finds protocol in the hash, and starts sending

5

DATAFLOW

Protocol definition

ucp_proto_t

ucp_proto_select_elem_t

- Protocol progress function

- Protocol lanes

- Extra protocol-specific configuration

Performance and

threshold calculation
Selection key

ucp_proto_select_param_t

API send operation

(ep, buffer, length)

API RMA operation

(ep, buffer, length, rkey)

Protocol selection hash

ucp_proto_select_t

ucp_request_send()

length thresholds array

ucp_proto_threshold_elem_t[]

0..240b 240b..1024b 1024b..16k 16k..inf

eager/short eager/bcopy eager/zcopy rndv/get_zcopy

(on first use)

{contig,host} {contig, gpu, pci-near} {contig, gpu, pci-far}

eager,rndv/zcopy rndv/zcopy eager,rndv/pipelined

6

MAKING A PROTOCOL

- Protocol definition:

struct ucp_proto {

const char *name; /* Protocol name */

unsigned flags; /* Protocol flags for special handling */

ucp_proto_init_func_t init; /* Initialization function */

ucp_proto_config_str_func_t config_str; /* Configuration dump function */

uct_pending_callback_t progress; /* UCT progress function */

};

UCP_PROTO_REGISTER(&my_proto)

- Protocol init() function is called for every new key (=op,dtype,..) :

- Returns the estimated performance for every message range, or ERR_UNSUPPORTED if cannot run

- Initializes protocol’s “private data” configuration space

- Define “progress” function to send a request, given that all request fields and the “private data” are set

7

PROTOCOLS CUTOFF

- Common protocol logic combines the results of init() calls for all protocols

- Select best available protocol for each interval by using linear function intersect

- The performance of a protocol is “time to send” as function of message size

- Find the best protocol for every “interval” by walking on the linear intersections

8

PROTOCOLS CUTOFF

1

5

50

500

eager/short eager/bcopy eager/zcopy rndv/get_zcopy
P
ro

to
c
o
l
la

te
n
c
y,

 u
se

c

Message size

9

SEND PROGRESS

- API calls select a protocol and initialize send request fields (e.g tag)

- Protocols define progress functions which use these fields to perform UCT send operations

- New set of common inline functions for multi-rail, rkey resolve, fragmentation, ...

- Protocol responsible for calling completion callback and releasing the request

10

IMPLEMENTATION STATUS

Done for v1.10:

- Protocols common infrastructure

- Eager and RMA protocols with basic GPU support

- Off by default, turn on by UCX_PROTO_ENABLE=y

Planned for v1.11:

- Rendezvous protocols

- GPU pipelined

- Active messages

11

NEXT STEPS

- Implement all API with new protocols

- Remove exiting protocol and ep config code

- Rendezvous protocol with IOV list

- Protocol versions and wire compatibility

- Fine tune performance estimation model

