NVIDIA.

UCX PROTOCOLS

Yossi Itigin, UCF workshop 2021

ISSUES WITH CURRENT UCP PROTOCOLS

Scattered and complicated logic for protocol and thresholds selection

No support for protocol selection per memory type / locality

For non-inline case: many data-path checks for message size, datatype, memory type
Bad handling of endpoint configuration change while send operation is inflight
Incomplete handling of “aborting” send requests in case of endpoint error

Can’t reuse common code (e.g multi-rail) between protocols

ISSUES WITH CURRENT UCP PROTOCOLS

Scattered and complicated logic for protocol and thresholds selection

No support for protocol selection per memory type / locality

For non-inline case: many data-path checks for message size, datatype, memory type
Bad handling of endpoint configuration change while send operation is inflight
Incomplete handling of “aborting” send requests in case of endpoint error

Can’t reuse common code (e.g multi-rail) between protocols

SOLUTION APPROACH

Separate protocol definition from protocol selection engine
Generate protocol cutoff values in a generic way

Create a “protocol selection key” based on operation properties:

Operation, datatype, memory type, memory locality, extra flags

UCP endpoint and R-key point to protocol selection hash table

Similar endpoints/rkeys share the table

Protocol hash table entries are initialized on first use

A send operation creates selection key, finds protocol in the hash, and starts sending

DATAFLOW

API send operation APl RMA operation Protocol definition
(ep, buffer, length) (ep, buffer, length, rkey) ucp_proto_t

Selection key Performance and
ucp_proto_select_param_t threshold calculation

{contig,host} {contig, gpu, pci-near} {contig, gpu, pci-far}
| eager,rndv/zcopy | rndv/zcopy eager,rndv/pipelined

240b..1024b | 1024b..16k 16k..inf

Protocol selection hash
ucp_proto_select_t

length thresholds array

ucp_proto_threshold_elem_t[] eager/short eager/bcopy eager/zcopy rndv/get_zcopy

ucp_proto_select_elem_t

- Protocol progress function
- Protocol lanes
- Extra protocol-specific configuration

4

ucp_request_send()

MAKING A PROTOCOL

Protocol definition:

struct ucp proto {

const char *name; /* Protocol name */

unsigned flags; /* Protocol flags for special handling */
ucp proto init func t init; /* Initialization function */

ucp proto config str func t config str; /* Configuration dump function */

uct pending callback t progress; /* UCT progress function */

I
UCP PROTO REGISTER (&my proto)
Protocol init() function is called for every new key (=op,dtype,..) :
Returns the estimated performance for every message range, or ERR_UNSUPPORTED if cannot run

Initializes protocol’s “private data” configuration space

Define “progress” function to send a request, given that all request fields and the “private data” are set

PROTOCOLS CUTOFF

Common protocol logic combines the results of init() calls for all protocols
Select best available protocol for each interval by using linear function intersect
The performance of a protocol is “time to send” as function of message size

Find the best protocol for every “interval” by walking on the linear intersections

500
O
Q
(V)]
>
>
O 50
c
Q
+—J
S
[e)
O
@)
-
e
a 5

PROTOCOLS CUTOFF

—cager/short =—ecager/bcopy ==ecager/zcopy ==rndv/get_zcopy

Message size

SEND PROGRESS

API calls select a protocol and initialize send request fields (e.g tag)
Protocols define progress functions which use these fields to perform UCT send operations
New set of common inline functions for multi-rail, rkey resolve, fragmentation, ...

Protocol responsible for calling completion callback and releasing the request

IMPLEMENTATION STATUS

Done for v1.10:
Protocols common infrastructure
Eager and RMA protocols with basic GPU support
Off by default, turn on by UCX_PROTO_ENABLE=y
Planned for v1.11:
Rendezvous protocols
GPU pipelined

Active messages

Implement all APl with new protocols
Remove exiting protocol and ep config code
Rendezvous protocol with 10V list

Protocol versions and wire compatibility

Fine tune performance estimation model

NEXT STEPS

NVIDIA.

