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APACHE SPARK

100s of 1000s of data scientists and over 16,000 enterprises use Spark

Spark is 100x faster at processing data than Hadoop

1000+ contributors across 250+ companies

Databricks platform alone spins up 1 million virtual machines per day

Leading Framework for Distributed, Scale-Out Data Analytics

Examples of Increased Demand for AI-Driven Services and Analytics​

2B Digital Buyers > All Want the Better Product at a Lower Price​

>1M Known Asteroids and Comets > Understand Where They're Going and When​

500M Esports Viewers (Growing 20% YoY) > How to Increase Fan Engagement​

90% of US Homes Now Have Smart Meters > Determine More Efficient Uses of Electricity​

25B Connected Devices > Most Are Streaming Valuable Data that is Underutilized​

50 Devices per House Concurrently Drawing Power > Need to Turn Off Things Not Being Used​

202020102000

Data Processing

Requirement 
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SPARK 3.X IS AN UNIFIED AI PLATFORM

CLUSTER MANAGEMENT/DEPLOYMENT (YARN, K8S, Stand Alone)

DISTRIBUTED APPLICATIONS: ETL & ETL+AI

GPU CLUSTERS

SQL/DF MLlib GRAPH X

Distributed ML/DL 
FRAMEWORKS

(XGBoost, Horovod 
Tensorflow)

SPARK COMPONENTS

Streaming

SPARK 3.x CORE
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SHUFFLE IS THE KEY
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SHUFFLE BASICS
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MELLANOX + NVIDIA SHUFFLE ACCELERATION

• 2017 SparkRDMA shuffle plugin open sourced https://github.com/Mellanox/SparkRDMA

• Based on disni library (thin wrapper over verbs)

• Promote RDMA technology in Spark community (AI Spark summit talks Accelerating Shuffle: A Tailor-Made RDMA Solution for 
Apache Spark, Accelerated Spark on Azure: Seamless and Scalable Hardware Offloads in the Cloud)

• Initial customers POC, collected requirements and feedback.

• 2019 SparkUCX shuffle plugin https://github.com/openucx/sparkucx

• Java wrapper for UCX library implementation

• Fixes architectural bottlenecks in SparkRDMA

• 2020 Nvidia Rapids for Spark https://github.com/NVIDIA/spark-rapids

• Based on UCX java library for communication

• GPU + RDMA acceleration

• 2021 SparkUCX – unified shuffle architecture

• Public transport API, that can be utilized in other Spark and big data solutions

• Works for both GPU and host memory RDMA

https://github.com/Mellanox/SparkRDMA
https://databricks.com/session/accelerating-shuffle-a-tailor-made-rdma-solution-for-apache-spark
https://databricks.com/session/accelerated-spark-on-azure-seamless-and-scalable-hardware-offloads-in-the-cloud
https://github.com/openucx/sparkucx
https://github.com/NVIDIA/spark-rapids
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SPARKUCX ARCHITECTURE 

• Initialization: 

• Spark driver allocates global metadata buffer per shuffle stage, to hold addresses and memory keys of data and index files on

mappers.

• Mapper phase: 

• mmap() and register index and data files

• Publish {address, rkey} to driver metadata buffer (ucp_put).

• Reduce phase: 

• Fetch metadata from driver (ucp_get)

• For each block:

• Fetch offset in data file, from index file (ucp_get).

• Fetch block contents from data file (ucp_get).
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RAPIDS SPARK UCX SHUFFLE
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ACCELERATED SPARK SHUFFLE RESULTS

TPC-DS 3TB Parquet format, Q5
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STEP BY STEP SETUP
Reference Deployment Guide

RDG: Apache Spark 3.0 on Kubernetes 
accelerated with RAPIDS over RoCE network.

RDG: Accelerating Apache Spark 3.0 with 
RAPIDS Accelerator over RoCE network.

https://docs.mellanox.com/pages/viewpage.action?pageId=25152352
https://docs.mellanox.com/pages/viewpage.action?pageId=28938181
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NEXT STEPS

1. RegisterBlock (blockId, address, length) – associates memory block with a blockId

2. MutateBlock (blockId, newAddress, newLength, callback) – changes block location on spill

3. FetchBlockByBlockId (blockId, destinationBuffer, callback)  - fetches remote block. Transport selects best protocol 

(one sided, AM ) to transfer the data

4. Unregister(blockId) – tells transport block is not needed

Unified transport API
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NEXT STEPS

1. One sided GPU RDMA

2. GPU topology awareness 

3. GPU bounce buffers

4. Error handling

5. Commodity architecture optimization (cloud, non GPUDIRECT).

Transport optimization
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SPARK+UCX BENEFITS

• Accelerating Spark 

• Lower Block transfer times (latency and total transfer time)

• Lower Memory consumption and management

• Lower CPU utilization

• GPU Direct

• Easy to deploy and configure

• Packed into a single JAR file

• Plugin is enabled through a simple configuration handle

• Allows finer tuning with a set of configuration handles

• Configuration and deployment are on a per job basis

• Can be deployed incrementally



Thanks,
QA


