
November 2020

UCX FOR APACHE SPARK
Peter Rudenko (prudenko@nvidia.com)

2

APACHE SPARK

100s of 1000s of data scientists and over 16,000 enterprises use Spark

Spark is 100x faster at processing data than Hadoop

1000+ contributors across 250+ companies

Databricks platform alone spins up 1 million virtual machines per day

Leading Framework for Distributed, Scale-Out Data Analytics

Examples of Increased Demand for AI-Driven Services and Analytics​

2B Digital Buyers > All Want the Better Product at a Lower Price​

>1M Known Asteroids and Comets > Understand Where They're Going and When​

500M Esports Viewers (Growing 20% YoY) > How to Increase Fan Engagement​

90% of US Homes Now Have Smart Meters > Determine More Efficient Uses of Electricity​

25B Connected Devices > Most Are Streaming Valuable Data that is Underutilized​

50 Devices per House Concurrently Drawing Power > Need to Turn Off Things Not Being Used​

202020102000

Data Processing

Requirement

3

SPARK 3.X IS AN UNIFIED AI PLATFORM

CLUSTER MANAGEMENT/DEPLOYMENT (YARN, K8S, Stand Alone)

DISTRIBUTED APPLICATIONS: ETL & ETL+AI

GPU CLUSTERS

SQL/DF MLlib GRAPH X

Distributed ML/DL
FRAMEWORKS

(XGBoost, Horovod
Tensorflow)

SPARK COMPONENTS

Streaming

SPARK 3.x CORE

4

SHUFFLE IS THE KEY

5

SHUFFLE BASICS

6

MELLANOX + NVIDIA SHUFFLE ACCELERATION

• 2017 SparkRDMA shuffle plugin open sourced https://github.com/Mellanox/SparkRDMA

• Based on disni library (thin wrapper over verbs)

• Promote RDMA technology in Spark community (AI Spark summit talks Accelerating Shuffle: A Tailor-Made RDMA Solution for
Apache Spark, Accelerated Spark on Azure: Seamless and Scalable Hardware Offloads in the Cloud)

• Initial customers POC, collected requirements and feedback.

• 2019 SparkUCX shuffle plugin https://github.com/openucx/sparkucx

• Java wrapper for UCX library implementation

• Fixes architectural bottlenecks in SparkRDMA

• 2020 Nvidia Rapids for Spark https://github.com/NVIDIA/spark-rapids

• Based on UCX java library for communication

• GPU + RDMA acceleration

• 2021 SparkUCX – unified shuffle architecture

• Public transport API, that can be utilized in other Spark and big data solutions

• Works for both GPU and host memory RDMA

https://github.com/Mellanox/SparkRDMA
https://databricks.com/session/accelerating-shuffle-a-tailor-made-rdma-solution-for-apache-spark
https://databricks.com/session/accelerated-spark-on-azure-seamless-and-scalable-hardware-offloads-in-the-cloud
https://github.com/openucx/sparkucx
https://github.com/NVIDIA/spark-rapids

7

SPARKUCX ARCHITECTURE

• Initialization:

• Spark driver allocates global metadata buffer per shuffle stage, to hold addresses and memory keys of data and index files on

mappers.

• Mapper phase:

• mmap() and register index and data files

• Publish {address, rkey} to driver metadata buffer (ucp_put).

• Reduce phase:

• Fetch metadata from driver (ucp_get)

• For each block:

• Fetch offset in data file, from index file (ucp_get).

• Fetch block contents from data file (ucp_get).

8

RAPIDS SPARK UCX SHUFFLE

9

ACCELERATED SPARK SHUFFLE RESULTS

TPC-DS 3TB Parquet format, Q5

10

STEP BY STEP SETUP
Reference Deployment Guide

RDG: Apache Spark 3.0 on Kubernetes
accelerated with RAPIDS over RoCE network.

RDG: Accelerating Apache Spark 3.0 with
RAPIDS Accelerator over RoCE network.

https://docs.mellanox.com/pages/viewpage.action?pageId=25152352
https://docs.mellanox.com/pages/viewpage.action?pageId=28938181

11

NEXT STEPS

1. RegisterBlock (blockId, address, length) – associates memory block with a blockId

2. MutateBlock (blockId, newAddress, newLength, callback) – changes block location on spill

3. FetchBlockByBlockId (blockId, destinationBuffer, callback) - fetches remote block. Transport selects best protocol

(one sided, AM) to transfer the data

4. Unregister(blockId) – tells transport block is not needed

Unified transport API

12

NEXT STEPS

1. One sided GPU RDMA

2. GPU topology awareness

3. GPU bounce buffers

4. Error handling

5. Commodity architecture optimization (cloud, non GPUDIRECT).

Transport optimization

13

SPARK+UCX BENEFITS

• Accelerating Spark

• Lower Block transfer times (latency and total transfer time)

• Lower Memory consumption and management

• Lower CPU utilization

• GPU Direct

• Easy to deploy and configure

• Packed into a single JAR file

• Plugin is enabled through a simple configuration handle

• Allows finer tuning with a set of configuration handles

• Configuration and deployment are on a per job basis

• Can be deployed incrementally

Thanks,
QA

