
UCD: A High-performance Datatype

Engine for Noncontiguous Data

Pavan Balaji, Argonne National Laboratory

Akshay Venkatesh, NVIDIA

Artem Polyakov, NVIDIA

Jim Dinan, NVIDIA

Manjunath Gorentla Venkata, NVIDIA

Pavan Balaji, Argonne National Laboratory

Noncontiguous Data Movement

▪ Important form of communication for scientific

computing (MPI) and modern DL systems

– Users can create static, but not contiguous,

data layouts

– Vector-of-struct-of-indexed-of-hvector-of-

contig-of-doubles

▪ UCX provides three (or four) modes of

communication today

– Contig: for contiguous data

– IOV: allows users to describe data as a series of

contiguous chunks

– Generic: no information passed to UCX about

the data layout (user has to provide

pack/unpack functionality)

– Strided: not implemented
X

Y Z

Pavan Balaji, Argonne National Laboratory

What are we missing?

▪ Impossible to provide some functionality

such as reduction (need to know

integers/floats, and not just bytes)

– Important for collectives as well as for RMA

accumulates

▪ Inefficient to utilize hardware features

such as InfiniBand UMR or to decide

between ”generic” (pack/unpack) vs. IOV

▪ Inconvenient to move noncontiguous data

from non-CPU memory

X

Y Z

IOV is better?

Generic is
better?

Pavan Balaji, Argonne National Laboratory

Shortcomings of IOV-based datatype processing

▪ Each IOV element contains:

– a pointer to the start of a contiguous

segment

– the length of the contiguous segment

▪ In common patterns, each

contiguous segment is small (e.g.,

one double)

▪ IOV creation is typically more

expensive than packing the data

– Plus, the overhead of multiple small

communication operations

Pavan Balaji, Argonne National Laboratory

UCD: Noncontiguous Datatype Engine

▪ UCD provides almost all of the MPI datatype functionality + additions

needed for practical usage within other libraries

▪ Four sets of APIs

– Predefined datatypes and datatype creation

• All MPI basic datatypes (including pair types) are supported

• All derived datatype creations (except darray) are supported

– Pack/unpack/accumulate routines

• With extensions, so one can perform partial packing (for pipelining)

– IOV routines: convert derived datatypes to an IOV

– Flatten/unflatten routines

• Convert the derived datatype into a portable format

• Can be portably sent to other processes (e.g., when RMA is implemented

with active messages, or for shared memory)

▪ Internally utilizes “yaksa” to support both CPU and GPU memory

– Working with NVIDIA (integrated), Intel (integrated) and AMD (in progress)

Pavan Balaji, Argonne National Laboratory

Datatype creation routines

▪ Very similar to MPI datatype creation routines

▪ Hierarchical construction, so data layouts can be arbitrarily

complex

▪ Basically equivalent to pulling out the datatypes part of MPI

outside the MPI standard, so it’s usable within other

environments too

int ucd_create_vector(int count, int blocklength, int stride,

ucd_type_t oldtype, ucd_info_t info, ucd_type_t *newtype);

UCD_TYPE__INT, UCD_TYPE__FLOAT, UCD_TYPE__DOUBLE, ..

Pavan Balaji, Argonne National Laboratory

Pack/Unpack routines

▪ Extended versions of MPI_Pack/unpack routines

– Allow for offsets and partial packing (allows one to pipeline packing

into temporary buffers)

• E.g., pack the first 64KB into a temporary buffer, send it, pack the next

64KB into a temporary buffer, …

– Allow for nonblocking packing

• Useful for GPU resident buffers, where a DMA request or a kernel launch

might need to complete for the pack

– Allow for predefined ops on the packed data (SUM, BOR, LOR, …)

int ucd_ipack(const void *inbuf,

uintptr_t incount, ucd_type_t type, uintptr_t inoffset,

void *outbuf, uintptr_t max_pack_bytes, uintptr_t *actual_pack_bytes,

ucd_info_t info, ucd_op_t op, ucd_request_t *request);

Pavan Balaji, Argonne National Laboratory

IOV routines

▪ Similar to packing, allows for offsets and partial conversion to IOV

segments: useful for pipelining

int ucd_iov(const void *buf,

uintptr_t count, ucd_type_t type, uintptr_t iov_offset,

struct iovec *iov, size_t max_iov_len, uintptr_t *actual_iov_len);

ucd_iov_len(count, type, &iov_len);

ucd_get_size(type, &size);

if (count * size / iov_len > THRESHOLD) {

ucd_iov(..., iov, ...);

for (int i = 0; i < iov_len; i++) internal_isend(...);

} else {

ucd_ipack(..., &outbuf, ...);

ucd_wait(request);

internal_isend(...);

}

Intended Usage

Pavan Balaji, Argonne National Laboratory

Flatten/unflatten routines

▪ Datatype flattening converts a UCD type into a portable

format that can be transferred across virtual address space

boundaries (e.g., between MPI processes)

▪ Particularly useful for one-sided communication

– Origin process provides both origin and target datatype

– If the communication library decides to use active messages to

implement it, it would need to send the target datatype to the target

process

▪ Can also be useful for some persistent collective operations

int ucd_flatten(ucd_type_t type, void *flattened_type);

int ucd_unflatten(ucd_type_t type, const void *flattened_type);

Pavan Balaji, Argonne National Laboratory

General comments about the UCD API

▪ All routines are local: everything will complete “immediately”

(i.e., in a finite amount of time)

▪ Routines can be separated into two classes:

– Data touching: pack/unpack are the only two routines that touch the

data and have nonblocking variants to allow for pipelining

• It would be semantically correct if we waited for completion in the

ipack/iunpack routines, but would hurt performance

– Non-data-touching: everything else

• No nonblocking variants for these routines

Yaksa:

UCD’s internal data management engine

Pavan Balaji, Argonne National Laboratory

Yaksa Software Architecture

yaksi_Frontend

yaksa_

yaksuri_
Backend

Glue

yaksur_

yaksuri_
seqi_

yaksuri_seq

yaksuri_
cudai_

yaksuri_cuda

yaksuri_
hipi_

yaksuri_hip

yaksuri_
zei_

yaksuri_ze

Backend
Drivers

Device Independent
Handles corner cases

Manages inter-driver
interactions

Driver-specific fast-
path code

No parallel backend for CPUs: easy to write a pthreads or OpenMP
wrapper outside of Yaksa for parallel packing

Pavan Balaji, Argonne National Laboratory

Backend code generation (1/2)

▪ The frontend manages quirky inputs such as nonzero offsets or partial

packing/unpacking

– Converts into a series of smaller structured pack/unpack routines

– Easier to generate code for structured pack/unpack blocks

▪ Functions generated for up to four levels nesting (three, if you don’t

include the basic datatype)

– All derived datatype combinations, except struct

– Each datatype has function pointers pointing to the specific

pack/unpack functions that would work for that type

Pavan Balaji, Argonne National Laboratory

Backend code generation (2/2)
Up to 3-level datatypes (suitable for up to 4D data structures)

Can use any attribute available at type creation time
(static block lengths, basic datatypes)

Structured access with restrict pointers makes it easier
for compilers to vectorize and prefetch

Pavan Balaji, Argonne National Laboratory

Yaksa Vectorization

▪ Data copy in all the Yaksa kernels can be done in parallel

▪ Focusing on innermost loops of _generic functions:

– Clang 10.0.0, GCC 9.2.0, GCC8.2.0, and GCC5.5.0

yield the same results (60 - 80%)

• We believe all functions should be vectorized

▪ We are exploring the reason of failures

and how to promote vectorization

– Calculating induction variables outside the loop

seems effective, but it needs more investigation

▪ Note:

– Other innermost kernels (contig/hindexed/resized) are not vectorized.

– Vectorization results of specialized innermost loops that have fixed

loop ranges vary (because of a cost model and efficiency of SLP-

vectorizer)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

blklen blkhindx hvector

Ratio of vectorized _generic
functions

Pavan Balaji, Argonne National Laboratory

GPU backends (CUDA and ZE)

▪ Kernel-offload based packing

▪ Two sets of temporary buffers maintained on each device

– One for staging data (in case the pack is between device <-> host)

– One for staging datatype metadata

▪ Staging data: Simple pool of buffers for packing/unpacking

– If the pool is empty, the operation is queued up in software (progress

poke needed)

▪ Staging datatype metadata:

– Managed memory, allowing for frequently used datatypes to be

cached on the GPU

– Allows the runtime to evict these buffers if the application needs it

Pavan Balaji, Argonne National Laboratory

GPU backend code generation: CUDA example

Separate host-side and device-side code generation, and explicit
management of datatype metadata on the GPU is needed

Pavan Balaji, Argonne National Laboratory

Backend Glue

▪ The backend glue layer handles multi-driver or device-to-device

interactions for a single driver

– Basically anything that uses temporary buffers

– Uses a progress engine to keep the use of temporary buffers within a

threshold

– Converts all zero-copy calls to PUT-based, instead of GET-based

▪ Creates somewhat complex graph structures to help with

temporary buffer management

– E.g., unpack/compute from device 1 to device 2 when there is no D2D IPC

available can have numerous steps

– (1) Pack from device 1 (source buf) to device 1 (tmpbuf); (2) DMA from

device 1 (tmpbuf) to host; (3) DMA from host to device 2 (tmpbuf); (4)

accumulate from device 2 (tmpbuf) to device 2 (dest buf)

Performance Results

Pavan Balaji, Argonne National Laboratory

Data packing Y-Z plane of a 3D matrix

0

10

20

30

40

50

60

70

80

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Packing the Y-Z plane of a 3D matrix (2 x
2 x <dims>)

memcpy

Hand-tuned

UCD H2H

mpich/master (dataloop)

0

1

2

3

4

5

6

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Packing the Y-Z plane of a 3D matrix (2
x 2 x <dims>)

memcpy

Hand-tuned

Yaksa H2H

Extreme case: only the outermost dimension is large

Pavan Balaji, Argonne National Laboratory

Data packing: Last 4 dimensions of a 5D matrix

Yaksa uses code generation for up to 4D matrices. Beyond that, at least one level has to be
packed using multiple function calls. The above graphs show the worst-case scenario.

0

50

100

150

200

250

300

Ti
m

e
(m

se
c)

Number of integers in the last dimension

Packing the last 3 dimensions (matrix is 2 x
2 x 2 x 2 x <ndims>)

memcpy

Hand-tuned

UCD

mpich/master (dataloop)

0

5

10

15

20

25

30

35

40

Ti
m

e
(m

se
c)

Number of integers in the last dimension

Packing the last 3 dimensions (matrix is
2 x 2 x 2 x 2 x <ndims>)

memcpy

Hand-tuned

Yaksa

Pavan Balaji, Argonne National Laboratory

H2H vs. D2D (CUDA)

Extreme case: only the outermost dimension is large

0

1

2

3

4

5

6

1 2 4 8

1
6

3
2

6
4

1
28

2
56

5
12 1

K

2
K

4
K

8
K

1
6K

3
2K

6
4K

1
28

K

2
56

K

5
12

K

1
M

2
M

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Packing the Y-Z plane of a 3D matrix (2 x 2 x <dims>)

UCD H2H UCD D2D

Code Status

Pavan Balaji, Argonne National Laboratory

UCD code

▪ Available as a standalone library (not integrated into UCX)

– https://github.com/pavanbalaji/ucd

– (sorry, I just got our legal go ahead yesterday)

https://github.com/pavanbalaji/ucd

Pavan Balaji, Argonne National Laboratory

Next steps

▪ UCD is currently standalone

– Not very useful as a standalone library (very similar to yaksa)

– Needs some interaction with UCX/UCC to be useful

▪ UCD needs to internally keep track of some datatype

information:

– Some “special datatypes” (e.g., vector-of-vector-of-double)

– Base types (e.g., double, int)

▪ It needs to use some internal (not user visible) functionality to

expose this to UCP/UCC

▪ UCP/UCC can use hardware features (such as UMR) to

accelerate them

Pavan Balaji, Argonne National Laboratory

Other things the WG is thinking about

▪ UCD (actually yaksa) internally creates its own set of streams

and temporary buffers for each GPU

– Perhaps it is possible for UCP/UCT to pass the temporary buffers that

it already has to UCD

▪ Runtime generation of pack/unpack kernels

– Avoids static generation of common kernels

– Somewhat easy to do with Intel GPUs, but might be harder for NVIDIA

or AMD GPUs

UCD: A High-performance Datatype

Engine for Noncontiguous Data

Pavan Balaji, Argonne National Laboratory

Akshay Venkatesh, NVIDIA

Artem Polyakov, NVIDIA

Jim Dinan, NVIDIA

Manjunath Gorentla Venkata, NVIDIA

