2020 OFA Virtual Workshop

RDMA WITH GPU MEMORY VIA DMA-BUF

Jianxin Xiong

RDMA OVERVIEW

2 OpenFabrics Alliance Workshop 2020

RDMA WITH SYSTEM MEMORY

= RDMA is “DMA + network”

Write DMA read DMA write registration
Read DMA write < DMA read

= DMA requires proper setup of the memory

* Memory pages are “pinned” DMA

° Bus addresses are used addresses
* Usually done at the time of “memory registration”
* For user space buffer in system memory]

« get_user_pages() System DMA network
NIC -
Memory

» sg_alloc_table() / sg_set page() / sg_next() /
3 OpenFabrics Alliance Workshop 2020

« dma_map_sg()

RDMA WITH GPU MEMORY

\ 4

t k
P2P DMA% NIC ne_vl/(?’r
PCle

4 OpenFabrics Alliance Workshop 2020

= GPU memory is local

* The NIC driver doesn’t know the DMA address memory

: : registration
= Cooperation between the NIC driver and AP
_ GPU Driver g >

= Peer-Direct from Mellanox

* Plug-in interface for kernel RDMA core

° Plug-ins are queried one-by-one when memory is addresses

registered, until the ownership is claimed

= Can we have a non-proprietary upstream

solution?

* The NIC driver can’t pin the memory directly

the GPU driver is needed

* Each GPU driver provides a plug-in module DMA
* Only available in MOFED

* Our proposal is to use dma-buf

DMA-BUF OVERVIEW

5 OpenFabrics Alliance Workshop 2020

DMA-BUF OVERVIEW

= Dma-buf is a standard mechanism in Linux kernel for sharing buffers between different
device drivers

-

user / \

kernel } ;
exporter

importer

dma-buf r_ef_gr_egc_ dma-buf
object object

-
—
s

VAR

L -
",
—

memory dma Yy dma
allocation address

6 OpenFabrics Alliance Workshop 2020

DMA-BUF API (EXPORTER)

= Create a new dma-buf object

struct dma_buf ops { /* bold means mandatory */
struct dma_buf *dma_buf export(const struct bool cache_sgt_mapping;
dma_buf_export_info *exp_info); bool dynamic_mapping;

int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
void (*detach)(struct dma_buf *, struct dma_buf _attachment *);

struct dma_buf_export_lnfo { struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *, enum

const char *exp_name; dma_data_direction);
struct module *owner; void (*unmap_dma_buf)(struct dma_buf attachment *, struct sg_table
const struct dma_buf_ops *ops; ¥, enum dma_data_direction);
size t size: void (*release)(struct dma_buf *);
) — ' int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
int flags; int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
struct dma_resv *resv;, int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
void *priv; void *(*map)(struct dma_buf *, unsigned long);
] void (*unmap)(struct dma_buf *, unsigned long, void *);
It void *(*vmap)(struct dma_buf *);
= Associate with a file descri ptOI‘) void (*vunmap)(struct dma_buf *, void *vaddr);

int dma_buf fd(struct dma_buf *dmabuf, int flags);

7 OpenFabrics Alliance Workshop 2020

DMA-BUF API (IMPORTER)

= Retrieve dma-buf object
struct dma_buf *dma_buf get(fd);
void dma_buf put(dma_buf);

CPU access functions:
int dma_buf_begin_cpu_access();
int dma_buf_end_cpu_access();

- id *dma_buf_k ;
= Attach device to dma-buf Xg:d dmrzagu:: Eu?;zgo.

* The exporter could check if the backing storage is accessible to dev int dma_buf_mmap();

void *dma_buf _vmap();

struct dma_buf_attachment *dma_buf attach(dma_buf, dev);
void dma_buf vunmap();

struct dma_buf_attachment *dma_buf dynamic_attach(dma_buf, dev, flag);
void dma_buf detach(dmabuf, attach);

= Map to DMA address
* This is when the exporter need to determine the backing storage location and pin the pages

struct sg_table *dma_buf _map_attachment(attach, direction);
void dma_buf unmap_attachment(attach, sg_table, direction);

8 OpenFabrics Alliance Workshop 2020

USE DMA-BUF FOR GPU MEMORY RDMA

MEMORY REGISTRATION WORKFLOW

Application

fi_mr_regattr
memory allocation .~ ’@‘ ~.
Yd

<addr, size, fd> 7

ibv_reg mr_fd

RDMA library
user

kernel ib uverbs reg mr_fd

RDMA driver

memory

10 OpenFabrics Alliance Workshop 2020

GPU SOFTWARE CHANGES

" Dma-buf is supported by many existing GPU drivers
* As part of DRM / GEM / PRIME
* Accessed by ioctl() over /dev/dri/card<n>, for example:

DRM _IOCTL_MODE_CREATE_DUMB Allocate a “dumb” buffer
DRM_IOCTL_I915 GEM_CREATE Allocate a “GEM” buffer
DRM_IOCTL_PRIME_HANDLE_TO_FD Get the dma-buf file descriptor

* Current GPU driver implementations may not be optimized for P2P access
« On-going improvements. e.g. https://www.spinics.net/lists/amd-gfx/msg32469.html
= User space library needs to provide an interface to retrieve the dma-buf fd

* As a property of allocated memory object (e.g. as the IPC handle)
* Applications don’t want to call ioctl directly

11 OpenFabrics Alliance Workshop 2020

https://www.spinics.net/lists/amd-gfx/msg32469.html

RDMA DRIVER CHANGES

= Core: support importing dma-buf as user memory via specialized ib_umem_get()

struct ib_umem *
ib_umem_dmabuf_get(
struct ib_udata *udata,
unsigned long addr,
size_t size, int dmabuf_fd,
int access);

struct ib_umem *
ib_umem_get(

struct ib_udata *udata,
unsigned long addr,
size_t size, int access);

= Uverbs: define two new uverbs commands for memory registration
°* IB_USER_VERBS CMD_REG_MR_FD
* IB_USER_VERBS CMD_REREG_MR_FD
* These two commands require two extra parameters when compared with the non-FD version:
 fd_type: type of the file descriptor, allow future extension
« fd: the file descriptor

12 OpenFabrics Alliance Workshop 2020

RDMA DRIVER CHANGES (CONT)

= Add two functions to the ib_device structure for interfacing with the vendor drivers

struct ib_device {

= Vendor RDMA drivers: implement the two functions
° Implementation is optional
* Only needed if the vendor driver want to support dma-buf
« Can choose to only support reg, but not rereg
« Setib_dev->dev.uverbs _cmd_mask accordingly
° Implementation is straightforward
» Take the non-fd version, and replace ib_umem_get() with ib_umem_dmabuf_get()

13 OpenFabrics Alliance Workshop 2020

RDMA LIBRARY CHANGES

= Add two new functions to the Verbs API

int ibv_rereg_mr_fd (
struct ibv_mr *ibv_reg_ mr_fd (struct ibv_mr *mr,
sruct ibv_pd *pd, int flags,
void *addr, struct ibv_pd *pd,
size_t length, void *addr,
enum ibv._mr_fd type fd_type, size_t length,

int fd, enum ibv_mr_fd_type fd_type,
int access); int fd,
int access);

* Again, these functions have two extra parameters compared with the non-fd version

OpenFabrics Alliance Workshop 2020

RDMA LIBRARY CHANGES (CONT)

= Add two uverbs command functions to interface with the kernel driver

int ibv_cmd_reg_mr_fd(, int fd_type, int fd, int access,
int ibv_cmd_rereg_mr_fd(, int fd_type, int fd, int access,

= Add two functions to the verbs context_ops structure for interfacing with vender libraries

struct verbs_context_ops {

struct ibv_mr *(*reg_mr_fd)(......, enum ibv_mr _fd type fd_type, int fd, int access);
int (*rereg_mr_fd)(......, enum ibv_mr_fd type fd _type, int fd, int access);

= Implement these two functions in the vender specific RDMA library (provider)
* Simply call the “ibv_cmd_” versions of these functions

15 OpenFabrics Alliance Workshop 2020

OFI CHANGES

= New fields in the fi_mr_attr structure allow fd being passed for memory registration

struct fi_mr_attr {

enum fi_hmem_iface iface; /* The APl used for memory allocation */
union {

uint64 _t reserved;

} device;

° Must use fi_mr_regattr()

= Providers need to recognize these fields and handle the registration properly
* Support is indicated by the FI_ HMEM capability bit

16 OpenFabrics Alliance Workshop 2020

STATUS AND FUTURE WORK

= A software prototype has been implemented
° Based on upstream Linux kernel 5.6 and most recent user space rdma-core libraries
* GPU: Intel GPUs that use the 1915 driver
°* RDMA NIC: Mellanox ConnectX-4 EDR, upstream driver

= Next steps
° Getting the RDMA driver changes into upstream Linux kernel
 First RFC patch set was sent to the linux-rdma list and reviewed
» Revised RFC patch set is being worked on

» Depend on GPU drivers being able to pin device memory via dma-buf interface, which is not there yet at
upstream

* Getting the RDMA library changes into upstream rdma-core
* Upstream the OFI changes

17 OpenFabrics Alliance Workshop 2020

2020 OFA Virtual Workshop

THANK YOU

Jianxin Xiong

