
BlazingSQL with UCX a long and winding 
road



SQL Queries Data Preparation Machine Learning Graph Analytics

Apache Arrow on GPU

blazingSQL cuDF cuML cuGRAPH



BlazingSQL runs SQL queries on cuDF dataframes. Now you can transform the 
same dataframe with SQL and pandas-like (cuDF) operations at scale.

BLAZINGSQL

SQL on DataFrames                             



$0.12M $1.8M

$0.2M

$1.16M

BlazingSQL running TPCx-BB big data benchmark on 30 use cases.
https://medium.com/rapids-ai/relentlessly-improving-performance-d1f7d923ef90

TPCx-BB

https://medium.com/rapids-ai/relentlessly-improving-performance-d1f7d923ef90


UCX Prequel
● Communication in BlazingSQL a year ago was not very isolated
● Implemented Communication layer in UCP

○ couldn't get IPC to work
○ performance wasn't there for us

● Reworked it all using UCT
○ got IPC to work

■ Still seemed to be making copies though we verified it was using IPC calls
○ performance wasn't there for us 
○ lots of bugs due to complex communication code that was mixed up with all the execution 

logic (due to blazingsql)
○ no ecosystem partners were using UCT directly so we couldn't get much help

● Not enough resources and time to figure this out and we wanted to wait and 
see if Nvidia's work could help us do this later. 



Relational Algebra
SQL
select o_custkey, sum(o_totalprice) from orders where o_orderkey < 10 group by o_custkey

Calcite Relational Algebra
LogicalProject(o_custkey=[$0], EXPR$1=[CASE(=($2, 0), null:DOUBLE, $1)])
  LogicalAggregate(group=[{0}], EXPR$1=[$SUM0($1)], agg#1=[COUNT($1)])
    LogicalProject(o_custkey=[$1], o_totalprice=[$2])
      BindableTableScan(table=[[main, orders]], filters=[[<($0, 10)]], projects=[[0, 1, 3]], aliases=[[$f0, 
o_custkey, o_totalprice]])

Blazing Physical Plan
LogicalProject(o_custkey=[$0], EXPR$1=[CASE(=($2, 0), null:DOUBLE, $1)])
  MergeAggregate(group=[{0}], EXPR$1=[$SUM0($1)], agg#1=[COUNT($1)])
    DistributeAggregate(group=[{0}], EXPR$1=[$SUM0($1)], agg#1=[COUNT($1)])  <-- Shuffles Data
      ComputeAggregate(group=[{0}], EXPR$1=[$SUM0($1)], agg#1=[COUNT($1)])
        LogicalProject(o_custkey=[$1], o_totalprice=[$2])
          BindableTableScan(table=[[main, orders]], filters=[[<($0, 10)]], projects=[[0, 1, 3]], 
aliases=[[$f0, o_custkey, o_totalprice]])



How Blazing is Distributed
● 90% of blazingsql is written in C/C++
● Executes within dask process

○ Creating a BlazingContext with a dask client calls c++ apis that start up Context for registering 
filesystems, creating execution graphs, executing those graphs on the workers

○ python .sql function calls two main blazing c++ apis
■ generate_graph
■ execute_graph

● All communication between workers once graph is executed is directly 
between the workers in C/C++ 

○ First attempt actually did this in python but this did not work out well for us



Blazing Execution Graph
● Homogenous
● Distributed
● Parallel
● Configurable



Kernels
● Inputs are CUDFs

○ Scans are only exception

● Outputs are CUDFS
● Perform computation a batch at a time
● May or may not required coordination / shuffling of data to other workers
● Very simple api to implement

○ implements a run function that can get inputs from a CacheMachine and schedules tasks
○ has a do_process function that is called when  it receives a batch



Distributing Kernels
● Certain kernels are distributing kernels that can call functions like

○ send 
■ one partition to one node

○ scatter
■ send a list of partitions to n nodes

○ broadcast
■ send all partitions to every node

● They are ignorant of HOW the message will be sent
○ don't care if its TCP or UCX



CacheData
● Usually Created from a CUDF
● TableScans generate these from a file handle + parser
● Holds a representation of a dataframe

○ GPU - CUDF
○ CPU - Basically A CUDF in CPU
○ Disk - temp Orc File
○ IOSource - Combines a file source (local, s3, hdfs, etc.) + Parser (parquet, orc, csv, etc.)



CacheMachine
● All kernels output to CacheMachines

○ Upon adding data to a CacheMachine it decides if it should go to CPU, Disk, or stay in GPU

● All kernels receive inputs from CacheMachines
● Tracks batches / rows processed
● Pulling from a cache returns a unique pointer to a CUDF

○ call waits with condition variable until data is available
○ returns a nullptr if no more data will be received



Execution Graph
Circles are Kernels

Arrows are CacheMachines

Plan Information
CUDFs

UCX



Message
● Metadata

○ Origin
○ Destinations

■ Other nodes that will receive this message
■ Can be a specific cache machine to feed a kernel
■ Can be in the generic input_cache when it is to be retrieved by specific business logic

● mostly used for sending around plans / estimates
○

● DataFrame
○ CUDF

■ Many GPU Buffers
■ Converted into a format more convenient for transport 

● no copies or allocations on gpu are performed for this



Attempt 1 UCX-PY
Use UCX-PY to start up endpoints to send and receive mesages

async def start_listener(self):

        async def handle_comm(comm):
                msg = await comm.read()
                msg = BlazingMessage(**{k: v.deserialize()
                                            for k, v in msg.items()})
                self.received += 1
                await self.callback(msg)

        ip, port = parse_host_port(get_worker().address)
        self._listener = await UCXListener(ip, handle_comm)
        await self._listener.start()
        return "ucx://%s:%s" % (ip, self.listener_port())

Receives message and 
invokes callback that routes 
message to cache

Starts UCX endpoint and 
begins listening for messages



Attempt 1 UCX-PY
● UCX-PY receives messages and routes to specific cache for a kernel or to 

general input cache

async def route_message(msg):
    worker = get_worker()
    if msg.metadata["add_to_specific_cache"] == "true":
        graph = worker.query_graphs[int(msg.metadata["query_id"])]
        cache = graph.get_kernel_output_cache(
            int(msg.metadata["kernel_id"]),
            msg.metadata["cache_id"]
        )
        cache.add_to_cache(msg.data)
    else:
        cache = worker.input_cache

                cache.add_to_cache_with_meta(msg.data, msg.metadata)



Attempt 1 UCX-PY
● Expose input and output caches from each worker to python via cython.

       cdef cppclass CacheMachine:

           void addCacheData(unique_ptr[CacheData] cache_data, const string & message_id, bool always_add )

           void addToCache(unique_ptr[BlazingTable] table, const string & message_id , bool always_add) nogil except+

           unique_ptr[CacheData] pullCacheData() nogil

           unique_ptr[CacheData] pullCacheData(string message_id) nogil

           bool has_next_now()

● Lots of python code to convert CacheData's to CUDFs 
○ https://github.com/felipeblazing/blazingsql/blob/feature/adding-caches-for-ucx/engine/bsql_eng

ine/io/io.pyx

https://github.com/felipeblazing/blazingsql/blob/feature/adding-caches-for-ucx/engine/bsql_engine/io/io.pyx
https://github.com/felipeblazing/blazingsql/blob/feature/adding-caches-for-ucx/engine/bsql_engine/io/io.pyx


Attempt 1 UCX-PY
● Create polling plugin to pull messages from output cache and send over wire

async_run_polling(self):
        import asyncio, os
        if self._worker.output_cache.has_next_now():
            df, metadata = self._worker.output_cache.pull_from_cache()
            await UCX.get().send(BlazingMessage(metadata, df))

            await asyncio.sleep(0)



Attempt 1 UCX-PY
Problems

● Python is single threaded
○ only one message sent at a time

● UCX-PY is meant for single threaded applications
● Python overhead was a problem situations where low latency was important 

for performance.
● There were alot of iterations and "flavors" we tried here
● Debugging was really tough and race conditions that would occur every few 

thousand so messages plagued us



Attempt 2  - UCX-PY endpoint
UCX C api send / recv 

● Use UCX-PY to set up end points as before
● using ucp_tag_send/recv_nb apis in C++ classes
● define callbacks in C
● Store state that was globally accessible for handling callbacks
● Could now right unit tests in C

○ Easier debugging



Communication Interfaces
MessageSender

● Polls for outgoing messages and sends them

MessageListener

● Polls for incoming messages and routes them

MessageReceiver

● Constructs a message from buffers that transport layer provides



Message Sender
class message_sender {

public:

message_sender(...);

std::shared_ptr<ral::cache::CacheMachine> get_output_cache();

void run_polling();

private:

ctpl::thread_pool<BlazingThread> pool;

std::shared_ptr<ral::cache::CacheMachine> output_cache;

std::map<std::string, node> node_address_map;           <-- map from nodes' names to their ucp endpoint

blazing_protocol protocol;                              <-- Specifies UCX / TCP

ucp_worker_h origin

size_t request_size;

int ral_id;

};



Message Listener
class ucx_message_listener : public message_listener {

public:

   void poll_begin_message_tag(bool running_from_unit_test);

   void add_receiver(ucp_tag_t tag, std::shared_ptr<message_receiver> receiver);

   std::shared_ptr<message_receiver> get_receiver(ucp_tag_t tag);

   void remove_receiver(ucp_tag_t tag);

   ucp_worker_h get_worker();

   void start_polling() override;

private:

   ucx_message_listener(ucp_context_h context, ucp_worker_h worker, const std::map<std::string, comm::node>& nodes, int 

num_threads);

   void poll_message_tag(ucp_tag_t tag, ucp_tag_t mask);

   size_t _request_size;

   ucp_worker_h ucp_worker;

   std::map<ucp_tag_t,std::shared_ptr<message_receiver> > tag_to_receiver;

};



Message Receiver
class message_receiver {

public:

 message_receiver(...);

 void set_buffer_size(uint16_t index,size_t size);

 void confirm_transmission();

 void * get_buffer(uint16_t index);

 bool is_finished();

 void finish();

private: 

 std::vector<ColumnTransport> _column_transports;

 std::shared_ptr<ral::cache::CacheMachine> _output_cache;

 ral::cache::MetadataDictionary _metadata;

 bool _include_metadata;

 std::vector<rmm::device_buffer> _raw_buffers;   <-- 

 int _buffer_counter = 0;

};



ucx_buffer_transport
class ucx_buffer_transport : public buffer_transport {

public:

   ucx_buffer_transport(...);

   ~ucx_buffer_transport();

   void send_begin_transmission() override;

protected:

   void send_impl(const char * buffer, size_t buffer_size) override;

private:

   ucp_worker_h origin_node;

   int ral_id;

   ucp_tag_t generate_message_tag();

   ucp_tag_t tag;  /**< The first 6 bytes are the actual tag the last two

                        indicate which frame this is. */

   int message_id;

   size_t _request_size;

};



Using Transport
std::shared_ptr<buffer_transport> transport;

if(blazing_protocol::ucx == protocol){

transport = std::make_shared<ucx_buffer_transport>(...);

}else if (blazing_protocol::tcp == protocol){

transport = std::make_shared<tcp_buffer_transport>(...);

}else{

throw std::runtime_error("Unknown protocol");

}

transport->send_begin_transmission(); 

transport->wait_for_begin_transmission(); <-- Now a NO-OP but it wasn't at this point in time

for(size_t i = 0; i < raw_buffers.size(); i++) {

transport->send(raw_buffers[i], buffer_sizes[i]);

}

transport->wait_until_complete(); <-- So we can limit number of simultaneous transmissions



Send Begin Transmission
void ucx_buffer_transport::send_begin_transmission() {

std::vector<char> buffer_to_send = detail::serialize_metadata_and_transports(metadata, column_transports);
std::vector<ucs_status_ptr_t> requests;
for(auto const & node : destinations) {

auto request = ucp_tag_send_nb(
node.get_ucp_endpoint(), buffer_to_send.data(), buffer_to_send.size(), ucp_dt_make_contig(1), tag, 
send_begin_callback_c);
if(UCS_PTR_IS_ERR(request)) {

throw std::runtime_error("Error sending begin transmission");
} else if(UCS_PTR_STATUS(request) == UCS_OK) {

recv_begin_transmission_ack();
} else {

auto blazing_request = reinterpret_cast<ucx_request *>(&request);
blazing_request->uid = reinterpret_cast<blazing_ucp_tag *>(&tag)->message_id;
requests.push_back(request);

}
}
wait_for_begin_transmission(); <-- Calls ucp_progress and waits for completion

}



Begin Callback
void send_begin_callback_c(void * request, ucs_status_t status) {

auto blazing_request = reinterpret_cast<ucx_request *>(request);
auto transport = message_uid_to_buffer_transport[blazing_request->uid];
transport->recv_begin_transmission_ack();
ucp_request_release(request);

}



Problems with Approach
● Blazing is C++ aside from GPU kernels

○ Couldn't pass member functions as callbacks
■ complicated state management
■ Resource management became more complicated since many of our resources are 

shared

● Lots of race conditions and error prone code
○ The callbacks made debugging a bit more complicated since it was hard to assess where the 

issue began with many threads sending messages simultaneously

● UCX-PY endpoints were causing issues



Changes
● Use nbr apis so we don't have to invoke callbacks
● Create endpoints in C 

○ Share Context with UCX-PY



C endpoints + ucp_tag_send_nbr
● Liked the idea of not having to use callbacks and just checking on request 

status
● We could manage resources inside of the constructs we had built

auto status = ucp_tag_send_nbr(node.get_ucp_endpoint(), buffer_to_send.data(), buffer_to_send.size(), 
    ucp_dt_make_contig(1), tag, requests[i] + 32);

if (status == UCS_INPROGRESS) {
do {

ucp_worker_progress(origin_node);
status = ucp_request_check_status(&requests[i] + sizeof(ucx_request));

} while (status == UCS_INPROGRESS);
}
if(status != UCS_OK){

throw std::runtime_error("Was not able to send begin transmission to " + node.id());
}

WOOPS!!!



C endpoints + ucp_tag_send_nbr
● Go figure tons of threads spinning calling the exact same apis like 

ucp_progress was slow and a huge resource hog
○ we were so sleep deprived at the time

● Spent lots of time trying to understand the reasoning behind certain details 
like the request to nbr being defined as 

○ "Request handle allocated by the user. There should be at least UCP request size bytes of available space before the req. The 
size of UCP request can be obtained by ucp_context_query function."

https://openucx.github.io/ucx/api/v1.9/html/group___u_c_p___c_o_n_t_e_x_t.html#ga3485fb61663f4cc6f32e801654aedcff


Removing Acknowledgements
● Acknowledgements for initializing messages were pointless

○ UCX is smart and will hold onto messages that no one has tried to read yet
■ We had assumed we needed to be probing for a tag before the message was sent

● Acknowledgements added lots of latency
● Greatly improved performance (2x)



UCP Progress Manager
● Checks status of sent messages and runs progress on a single thread
● Lets Kernels know when message is completed sending so we can hold onto 

resources until they are no longer needed
● Greatly reduced CPU pressure
● Improved performance 



UCP Progress Manager
class ucp_progress_manager{

public:

   static ucp_progress_manager * get_instance();

   void add_recv_request(char * request, std::function<void()> callback);

   void add_send_request(char * request, std::function<void()> callback);

private:

  struct request_struct{

       char * request;

       std::function<void()> callback;     <-- only needs to be invoked messages which begin a cudf transfer

       bool operator <(const request_struct & other);

   };

   ucp_progress_manager(ucp_worker_h ucp_worker,size_t request_size);

   std::set<request_struct> send_requests;

   std::set<request_struct> recv_requests;

   ucp_worker_h ucp_worker;

   void check_progress();   <-- Checks on progress of requests

};



check_progress()
   ucp_worker_progress(ucp_worker);

       for(const auto & req_struct : cur_send_requests){

           auto status = ucp_request_check_status(req_struct.request + _request_size);

           if (status == UCS_OK){

               {

                   std::lock_guard<std::mutex> lock(request_mutex);

                   this->send_requests.erase(req_struct);

               }

               delete req_struct.request;

               req_struct.callback();

           } else if (status != UCS_INPROGRESS){

               throw std::runtime_error("Communication error in check_progress for send_requests.");

           }

       }



Current State
● IPC fails in UCX if we don't call cudaSetDevice to initialize a cudacontext 

before any messages are sent
○ this fix leads to other race conditions that we can't replicate with our TCP implementation
○ It is still slower than TCP in this case

● Works without IPC but is much slower than TCP 
● Blazing sends many more (smaller) messages than other use cases that our 

friends at Nvidia have seen
○ many times its just metadata for coordination between the nodes without a big payload



Optimizations
● Packing small messages with many buffers into one buffer
● Pool for requests
● Investigating ipc failures on certain hardware configurations



Thanks!
● Thanks to Peter Entschev, Matt Baker,  Corey Nolet  for all of their patience 

and help in implementing and testing.
● Thanks to Oscar Hernandez and Jens Glaser for supporting our work on 

UCX.


