
Until UCC is Here - UCG Status Update

Alex Margolin

UCF Annual Workshop, December 2020

Outline

1. UCG status (and how did we get to it)

2. UCG in the software stack

3. UCG & UCC – where is this going?

4. Huawei’s roadmap for collective operations

A Brief history of UCG (G for Groups) and UCC

• [Aug. 2018] UCG Started (just me, soon after joining Huawei)

• [Dec. 2018] UCG API submitted for upstreaming (#3091#3602)

• [Nov. 2019] Talks about upstreaming UCG (#4545) – didn’t work out…

• [Dec. 2019] UCF formed the UCC working-group

• [Sep. 2020] Huawei Cloud officially publishes its

“High-Performance Communication Library”

• [Sep. 2020] UCC’s external API finalized (#1)

• [Dec. 2020] … this update.

*Any UCX version?! Yes. See next slide.

https://github.com/openucx/ucx/pull/3602
https://github.com/openucx/ucx/pull/4545
https://github.com/openucx/ucc/pull/1

Current Status

Right now - there are too many versions!

1. my personal UCG repo (deprecated, finally)

2. xUCG (OpenUCX github)
- This is my “master” branch – should fit ANY* UCX version, not 100% stable…

3. Huawei’s xUCG (Huawei’s github)
- Recently created by the team in China – assumes UCX v1.6, very stable

4. Huawei’s internal UCG (Steady release schedule - within Hyper-MPI)
- Includes some proprietary extensions, but mostly just experimental code

*Any UCX version?! Yes. See next slide.

https://github.com/openucx/xucg
https://github.com/kunpengcompute/xucg
https://www.huaweicloud.com/kunpeng/software/hypermpi.html

UCG Today

Supports:

• a range of collectives (Bcast, Reduce, Allreduce, Barrier, Scatter, Gather, Allgather),

• any datatype Open-MPI does,

• any transports UCT does,

• any protocol UCP does, (not even close… but we’re working on it!)

• various hardware platforms.

Also: tested up to 256 (x86) nodes and up to 256 (ARM) cores on a host.

Outline

1. UCG status (and how did we get to it)

2. UCG in the software stack

3. UCG & UCC – where is this going?

4. Huawei’s roadmap for collective operations

UCG in the software stack

Making UCG work with ANY UCX version

Challenge*: keep using UCX internal APIs (UCS / UCT) as it evolves

*Not as hard as it sounds, actually.

Incident #1 - Change-ID 8da6a5be2e:
- typedef void (*uct_completion_callback_t)(uct_completion_t *self,

- ucs_status_t status);

+ typedef void (*uct_completion_callback_t)(uct_completion_t *self);

Incident #2 - Change-ID fca960826a:
- #define UCS_CONFIG_REGISTER_TABLE_ENTRY(_entry) \

+ #define UCS_CONFIG_REGISTER_TABLE_ENTRY(_entry, _list) \

...

https://github.com/openucx/ucx/commit/8da6a5be2ebbb2133da438dc849d57a14ca04a82
https://github.com/openucx/ucx/commit/fca960826ac2bf7b00c1e835296cf99da722de84

Making UCG work with ANY UCX version

Challenge*: keep using UCX internal APIs (UCS / UCT) as it evolves

*Not as hard as it sounds, actually.

Incident #1 - Change-ID 8da6a5be2e:

AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include "uct/api/uct.h"]],

[[uct_completion_callback_t func = NULL;]

[func(NULL, UCS_OK);]])],...

Incident #2 - Change-ID fca960826a:

AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include "ucs/config/parser.h"]],

[[#undef UCS_CONFIG_REGISTER_TABLE_ENTRY]

[#define UCS_CONFIG_REGISTER_TABLE_ENTRY(a, b)]

[UCS_CONFIG_REGISTER_TABLE(NULL, NULL, NULL, ...

https://github.com/openucx/ucx/commit/8da6a5be2ebbb2133da438dc849d57a14ca04a82
https://github.com/openucx/ucx/commit/fca960826ac2bf7b00c1e835296cf99da722de84

APIs

• “Northbound”:
• Generic (src/ucg/api/ucg.h): ucg_group_create, ucg_collective_create

• MPI-specific (src/ucg/api/ucg_mpi.h): MPI_Reduce(),

• Versioning (src/ucg/api/ucg_version.h): similar to ucp_version.h

• “Southbound”:

• Plan Components (src/ucg/api/ucg_plan_components.h):

- for accommodating multiple implementations (similar to OMPI’s MCA COLL)

• Expected components:“builtin” (day-1), hicoll, NCCL?

Northbound API, side-by-side (Blocking)

MPI Application (or MPI-specific API) UCX Groups (UCG) Equivalent (Generic API)

MPI_Bcast(bufA,...,rowcomm) paramsA.buf = bufA;

paramsA.type.modifiers = BCAST_MODIFIERS;

...

ucg_collective_create(rowGroup, ¶msA, &collA);

ucg_collective_start_nb(collA, &reqA);

MPI_Wait(reqA, &status);

Northbound API, side-by-side (Non-blocking)

MPI Application (or MPI-specific API) UCX Groups (UCG) Equivalent (Generic API)

MPI_Ibcast_init(..., &req);

for (i=0; i<MAXITER; i++) {

compute(buf);

MPI_Start(req);

MPI_Wait(req, &status);

}

MPI_Request_free(req);

ucg_collective_create(Group, ..., &coll);

for (i=0; i<MAXITER; i++) {

compute(buf);

ucg_collective_start_nb(coll, &req);

MPI_Wait(req, &status);

}

ucg_request_free(req);

Decoupling Planning and Execution – Recursive Doubling

Phase # Ranks Action

1 0 Send a message and also wait for one

2 3 Send a message and also wait for one

3 5 Send a message and also wait for one

You
Are

Here

P0

P1
P2
P3

A
B

D
C

f(ABCD)
f(ABDC)
f(ABCD)

f(ABCD)

Allreduce

Decoupling Planning and Execution – Tree-based
Phase # Ranks Action

1 2,3 Wait for a
message

2 0 Send a message

3 0 Wait for a
message

4 2,3 Send a message

Phase # Ranks Parameters

1 2,3 Action: Wait for a message from each
node
Incoming buffer: temporary buffer of 24
bytes which starts with the user’s input
Incoming length: 16 bytes
Incoming offset: 8 bytes

2 0 Action: Send a message to each node
Outgoing buffer: the temporary buffer
from the previous step
Outgoing length: 24 bytes
Outgoing offset: 0 bytes

You
Are

Here

8-byte call to MPI_Gather()

*Is tree the best choice for MPI_Gather? Not always…

Decoupling Planning and Execution – Tree-based
Phase # Ranks Action

1 2,3 Wait for a
message

2 0 Send a message

3 0 Wait for a
message

4 2,3 Send a message

Phase # Ranks Parameters

3 0 Action: Wait for a message from each
node
Incoming buffer: destination buffer
Incoming length: 8 bytes
Incoming offset: 0 bytes

4 2,3 Action: Send a message to each node
Outgoing buffer: destination buffer
Outgoing length: 8 bytes
Outgoing offset: 0 bytes

You
Are

Here

8-byte call to MPI_Bcast()

Outline

1. UCG status (and how did we get to it)

2. UCG in the software stack

3. UCG & UCC – where is this going?

4. Huawei’s roadmap for collective operations

My point of view on UCC

UCC is coming about, slowly – it’ll be a while before we can use it, and…

UCC looks to me like a big performance risk!
• UCC adds levels of abstraction, possibly returning issues from Open-MPI

• Example #1: UCC is only limited to UCX API and cannot access internals.

• Example #2: progress is not aware whether SHARP is used at the moment.

• Development is “breadth-fist” instead of “depth-first”
• Preliminary performance results are not expected any time soon.

• UCC is practically just two participants: Mellanox and Huawei.
• Missing representation from other vendors and potential users.

My point of view on UCC

UCC is coming about, slowly – it’ll be a while before we can use it, and…

UCC looks to me like a big performance risk!
• UCC adds levels of abstraction, possibly returning issues from Open-MPI

• Example #1: UCC is limited to UCP API… how/when to use atomics for reduction?

• Example #2: progress is not aware whether SHARP is used at the moment.

• Development is “breadth-fist” instead of “depth-first”
• Preliminary performance results are not expected any time soon.

• UCC is practically just two participants: Mellanox and Huawei.
• Missing representation from other vendors and potential users.

My point of view on UCC

UCC is coming about, slowly – it’ll be a while before we can use it, and…

UCC looks to me like a big performance risk!
• UCC adds levels of abstraction, possibly returning issues from Open-MPI

• Example #1: UCC is limited to UCP API… how/when to use atomics for reduction?

• Example #2: progress is not aware whether SHARP is used at the moment.

• Development is “breadth-fist” instead of “depth-first”
• Preliminary performance results are not expected any time soon.

• UCC is practically just two participants: Mellanox and Huawei.
• Missing representation from other vendors and potential users.

Challenges, looking forward

1. Must show the approach is beneficial - before investing much effort
- I don’t think xCCL’s or xUCG’s individual performance is proof enough…

Challenges, looking forward

1. Must show the approach is beneficial - before investing much effort
- I don’t think xCCL’s or xUCG’s individual performance is proof enough…

2. Community involvement:

• More contributing parties

• More representation for use-cases

• More exposure, feedback, stakeholders…

Challenges, looking forward

1. Must show the approach is beneficial - before investing much effort
- I don’t think xCCL’s or xUCG’s individual performance is proof enough…

2. Community involvement:

• More contributing parties

• More representation for use-cases

• More exposure, feedback, stakeholders…

3. Delivering relevant, high-quality software.

UCG

Not going anywhere, anytime soon…
no open-source alternative (yet)

3 possible paths:

1. Merge into UCC

2. Merge into Huawei’s UCX package

3. Merge into upstream UCX

Existed before UCG

Added for UCG

Can be added

UCP Worker

IB (P2P) SM (P2P) SM (coll.)

ucs_mpool*ucs_config* ucs_locked_ptr_array* Lock for SM

ucc_config*

Can be removed

Algo (RD, tree, etc.) Topology Info

Algo (RD, tree, etc.) ?Transport-specific TX

Common RX handler (Active-message based?)

Memory Mgmt.

Conn. establishment Reactive RX engine

U

U
sin

g
 u

ct.h

U
sin

g
 u

cs/p
tr_

a
rra

y.h

https://github.com/kunpengcompute/hucx

Outline

1. UCG status (and how did we get to it)

2. UCG in the software stack

3. UCG & UCC – where is this going?

4. Huawei’s roadmap for collective operations

Development Roadmap

• Hardware-specific capabilities
• Kunpeng CPU
• Storage product-lines
• Atlas AI accelerator product-lines

• Integration with related HPC Software
• HPC Storage and parallel filesystems, e.g. MPI I/O
• Batch scheduler, e.g. SLURM (for job information)
• Builders, e.g. Spack (provide collectives for other packages)

• Custom acceleration hints (through MPI?)
• Persistent operations
• Read-only / write-only buffers

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

All logos and images displayed in this document are the sole property of their respective copyright holders. No endorsement, partnership, or affiliation is suggested or implied. The

information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio,

new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive

statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time

without notice.

www.huawei.com

