
One-to-many UCT Transports

Alex Margolin and Morad Horany

UCF Annual Workshop, December 2020

Outline

1. Problem Statement

2. Collective operations on shared-memory

3. Using network multicast for collective operations

Collective operations in Open MPI

1. When Open MPI Starts – it chooses
which (MCA) COLL components will be
later used.

2. When user calls MPI_Bcast() – MPI
passes the call to the chosen COLL
component.

3. The chosen component can:

a) Use P2P components (next slide)

b) Call some external library (Part 3)

c) Fail and fallback to another module...

Example: basic broadcast code (from: coll_base_bcast.c)

ompi_coll_base_bcast_intra_generic(void* buffer, int original_count, struct ompi_datatype_t*

datatype, ...

{

rank = ompi_comm_rank(comm);

/* Root code */

if(rank == root) {sendcount = count_by_segment;

for(segindex = 0; segindex < num_segments; segindex++) {

for(i = 0; i < tree->tree_nextsize; i++) {

err = MCA_PML_CALL(isend(tmpbuf, sendcount, datatype,

tree->tree_next[i],

MCA_COLL_BASE_TAG_BCAST,

MCA_PML_BASE_SEND_STANDARD, comm,

&send_reqs[i]));

if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }

}

/* complete the sends before starting the next sends */

err = ompi_request_wait_all(tree->tree_nextsize, send_reqs,

MPI_STATUSES_IGNORE);

if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }

tmpbuf += realsegsize;

}

}

UCG Reminder

Our initial idea for UCG was to
focus on consolidating calls:

Batch (identical) send/receives!
Open MPI

PML

Open UCX Open UCX

MPI_Bcast()

Open MPI

COLL

PML

MPI_Bcast()

B
ca

st

UCP

S
e

n
d

 #
1

S
e

n
d

 #
2

UCP

UCG

Current Usage of Open UCX Consolidated Usage of Open UCX

UCT UCT

S
e

n
d

 #
1

S
e

n
d

 #
2

COLL

UCG Reminder

Our initial idea for UCG was to
focus on consolidating calls:

Batch (identical) send/receives!

Premature optimization too
many abstraction layers are
the root of all evil.

Open MPI

PML

Open UCX Open UCX

MPI_Bcast()

Open MPI

COLL

PML

MPI_Bcast()

B
ca

st

UCP

S
e

n
d

 #
1

S
e

n
d

 #
2

UCP

UCG

Current Usage of Open UCX Consolidated Usage of Open UCX

UCT UCT

S
e

n
d

 #
1

S
e

n
d

 #
2

COLL

UCG Reminder

Our initial idea for UCG was to
focus on consolidating calls:

Batch (identical) send/receives!

Premature optimization too
many abstraction layers are
the root of all evil.

Open MPI

PML

Open UCX Open UCX

MPI_Bcast()

Open MPI

COLL

PML

MPI_Bcast()

B
ca

st

UCP

S
e

n
d

 #
1

S
e

n
d

 #
2

UCP

UCG

Current Usage of Open UCX Consolidated Usage of Open UCX

UCT UCT

S
e

n
d

 #
1

S
e

n
d

 #
2

COLL

Anatomy of a Collective Operation

p0 p1 p2 p3 p4 p5 p6 p7

p0 p2 p4 p6

p0 p4

p0

Core
(Hyper-

Threading)

CPU Socket (2 cores)

Host (2 CPUs)

Network (10 compute servers)

* Actual tree structure and radix may vary

Problem Statement

Reducing the latency of a “single level” of a one-to-many communication

Factors (not exhaustive nor prioritized):

• Data pattern: broadcast vs. scatter

• Data size: in UCX that’s short/bcopy/zcopy*

• Process affinity (w.r.t. memory hierarchy)

• Typical process imbalance

• Non-MPI: data availability (bcopy allows gradually providing chucks of it)

• What we do with the buffer afterwards (do we forward it?)

Another problem (mostly same factors): many-to-one communication.
*can we even consider zero-copy? Yes, we can! (just need a hint from MPI…)

Initial thoughts

1. Looks like the best for small groups (2/3 ranks) is using P2P.

2. Re-use the mechanisms/API we already have for P2P.
(not just send/recv – rcache and buffer pools are certainly useful here)

3. The tricky part is not how to place the data – it’s the sync. of N ranks.
(we can choose to put this burden on the root or on the leaf)

p0 p1

p0

p1

Outline

1. Problem Statement

2. Collective operations on shared-memory

3. Using network multicast for collective operations

We have shared memory today

• Shared-memory component in Open-MPI (ompi/mca/coll/sm)

• Various closed-source collective libraries have shared-memory components

What’s missing?
1. Re-using the same buffer with RDMA (coll/sm to call ibv_reg_mr() ?)

2. Does one-size-fit-all? (how to use atomics, for example)

*speaking of atomics - should we use atomic-add for reductions?

3. Avoiding memory copies like the plague pandemic!

4. Taking all the factors into account.

Recv Message buffer (FIFO)

Send Message buffer (FIFO)

uct_mm_fifo_ctl_t

Head Tail
uct_mm_fifo_element_t

flags am_id length … uct_mm_fifo_ctl_t

Head Tail

What we have today (P2P)

p0 p1

p0

p1

Fanount Message buffer (FIFO)

Fanin Message buffer (FIFO)

uct_mm_fifo_ctl_t

Head Tail
uct_mm_coll_fifo_element_t

pending am_id length … uct_mm_fifo_ctl_t

Head Tail

4 queues needed:
1+2. The existing
P2P queues, for
control messages
(e.g. Rendezvous).
3. Fanin, for
collectives like
reduce or gather.
4. Fanout, for
collectives like
bcast and scatter.

What was added

Multiple “modes” – Part 1

1. BATCHED mode, where buffers are written in separate cache-lines:

| element->pending = 0 | | | | |

| element->pending = 1 | | | 222p | |

| element->pending = 2 | | 111p | 222p | |

| element->pending = 3 | | 111p | 222p | 333p |

2. CENTRALIZED mode, like "batched" but with receive-side completion:

| element->pending = 0 | ???-0 | ???-0 | ???-0 |

| element->pending = 0 | ???-0 | 222-1 | ???-0 |

| element->pending = 2 | 111-1 | 222-1 | ???-0 | < rank#0 "triggers" checks

| element->pending = 3 | 111-1 | 222-1 | 333-1 |

^ ^ ^ ^

^ #1 #2 #3 -> the last byte is polled

^ by the receiver process.

The receiver process polls all these last bytes, and once all the bytes have

been set - the receiver knows this operation is complete (none of the senders know).

p1 p2

p0

p3

Multiple “modes” – Part 2 (Reduction-specific)

3. LOCKED mode, where the reduction is done by the sender:

| element->pending = 0 | |

| element->pending = 1 | 222 |

| element->pending = 2 | 222+111 |

| element->pending = 3 | 222+111+333 |

4. ATOMIC mode, same as LOCKED but using atomic operations to reduce:

| element->pending = 0 | |

| element->pending = 1 | 222 |

| element->pending = 2 | 222+111 |

| element->pending = 3 | 222+111+333 |

p1 p2

p0

p3

Some Comparison

Burden is on the - Mutual exclusion Typically good for:

Batched Receiver "pending" is atomic small size, low PPN

Centralized Receiver not mutually excluding small size, high PPN

Locked Sender element access uses lock large size

Atomic Sender element access is atomic imbalance + some ops

Where do these changes apply?

UCS
• Multi-process (pthread-)lock

UCT
• New endpoints + interfaces: mm_(sysv|posix)_bcast, mm_(sysv|posix)_incast

UCP
• The address of each process now contains these new UCT interfaces

UCG
• Make UCG aware of new UCT interface and use it accordingly

Some (*preliminary!) OSU results (*still work-in-progress…)

1. x86 vs ARM

“flat” bcast/reduce, Intel Xeon 6240 (18 cores) vs.
Huawei Kunpeng 920 (both at 2.6GHz).

2. P2P vs. one-to-many SM transport

Multi-level (tree-based) bcast and allreduce vs.
simple P2P – both in shared memory (on a Huawei
Kunpeng 920).

3. P2P vs. one-to-many SM transport

Bcast latency (PPN=64) as message size grows:

8b Xeon 6240 (x86) Kunpeng 920 (ARM) Improvement (%)

PPN Bcast Reduce Bcast Reduce Bcast Reduce

3 0.6 0.81 0.18 0.25 70.0% 69.1%

10 0.73 0.83 0.37 0.32 49.3% 61.4%

18 0.86 0.89 0.75 0.37 12.8% 58.4%

8b Bcast Allreduce

PPN P2P SM Improvement P2P SM Improvement

3 0.21 0.18 14% 0.57 0.62 -9%

4 0.28 0.26 7% 0.72 0.70 3%

5 0.28 0.29 -4% 0.83 0.74 11%

8 0.42 0.33 21% 1.04 0.88 15%

10 0.42 0.37 12% 1.12 0.98 13%

16 0.56 0.46 18% 1.38 1.23 11%

20 0.51 0.47 8% 1.55 1.34 14%

32 0.71 0.64 10% 2.59 2.63 -2%

40 0.81 1.03 -27% 2.95 3.08 -4%

63 0.88 0.91 -3% 3.9 3.94 -1%

64 1.25 1.09 13% 3.75 3.98 -6%

80 1.18 1.16 2% 3.97 4.30 -8%4 8 16 32 64 128 256 512 1024 2048 4096 8192

P2P 1.26 1.25 1.26 1.71 1.72 2.64 2.87 3.38 4.61 6.08 8.80 13.33

SM 1.06 1.09 1.07 1.07 1.44 1.87 2.00 2.18 2.54 3.03 4.20 6.49

Outline

1. Problem Statement

2. Collective operations on shared-memory

3. Using network multicast for collective operations

Motivation

• Multicast is a mode of communication where one sender can send to
multiple receivers by sending only one copy of the message

• Higher bandwidth and utilization

• Lower Latency on sender

Multicast in Open-MPI

• MPI_Bcast

• MPI_Allgather

• MPI_scatter

• MPI_alltoall

Multicast Group Join

• Join a multicast group on the switch.

• Join a multicast group on the host.

join a multicast group on the switch

• IGMP snooping is a method that network switches use to identify multicast groups

• IGMP enables switches to forward packets to the correct devices in their network

• Any host who wish to listen to multicast group must notify the kernel and the switch.

• Create and bind a socket to the desired Ethernet Interface

• Join a multicast group by sending a request via setsockopt (IP_ADD_MEMBERSHIP) to
the IGMP routers.

https://www.cloudflare.com/learning/network-layer/what-is-a-network-switch/?utm_referrer=https://www.google.com/
https://www.cloudflare.com/learning/network-layer/what-is-a-packet/?utm_referrer=https://www.google.com/

Multicast Group Join

• Join a multicast group on the switch.

• Join a multicast group on the host.

Join a multicast group on the host.

• Multicast works only with UD QPs

• IP address ranges from 224.0.0.0 through 239.255.255.255 are
considered IP Multicast addresses.

• we found an issue with Multicast over RoCEv1 and it’s being fixed by the
Switch Vendor.

• Receiver QP must attach to multicast group using ibv_attach_mcast in
order to receive packets on this group.

• Challenge: need to make sure that all Ranks are attached to the
Multicast Group before the first Send of data, otherwise they won’t
receive Connection Request/Response packets.

Multicast Interface

• ud_mcast_mlx5 inherits ud_mlx5 interface and overloads some of its operations

• ud_mcast_verbs inherits ud_verbs interface and overloads some of its operations

• Messages can be exchanged by Multicast or P2P (if we call ud_mlx5/ud_verbs)

• Root send Ctrl+Data messages via Multicast address.

• Receivers send back Ctrl messages via P2P.

ud_mcast_mlx5

ud_mlx5

• send_ctrl
• create_qp
• …..

• unpack_addr
• Iface_get_addr
• ep_get_addr
• ep_create
• iface_query

ud_mcast_verbs

ud_verbs

• send_ctrl
• create_qp
• …..

• unpack_addr
• Iface_get_addr
• ep_get_addr
• ep_create
• iface_query

Multicast Endpoint

• One problem with UCX is that it was built for P2P connections
• endpoint can be connected to only one endpoint

• Since we have 1 message to send to all receivers – we need to allow
one-to-many connection for an endpoint.

Root EP

EP - A

EP - B

EP - C

Multicast Reliability (Example)

Root

A

B

C

SwitchPSN #5

• Message with PSN #5 didn’t arrive to destination C.

Multicast Reliability

Root EP

EP - A

EP - B

EP - C

Switch

ACK #5 - from A

ACK #5 - from B
ACK #5 - from B

A - 5 B - 5 C - 4

Last Acked PSN array

• ACKs arrive from peer

• Resend will be triggered after timeout.

MPI_Bcast performance

0

0.5

1

1.5

2

2 4 6 8

La
te

n
cy

 (
u

se
c)

Number of Processes

Multicast vs. P2P
Message Size: 32 bytes

Multicast P2P

of
processes

Multicast P2P Improvement

2 0.48 0.54 11%

4 0.6 0.98 38%

6 0.6 1.3 53%

8 0.64 1.76 63%

• the more receivers we have the more latency we save.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

All logos and images displayed in this document are the sole property of their respective copyright holders. No endorsement, partnership, or affiliation is suggested or implied. The

information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio,

new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive

statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time

without notice.

www.huawei.com

