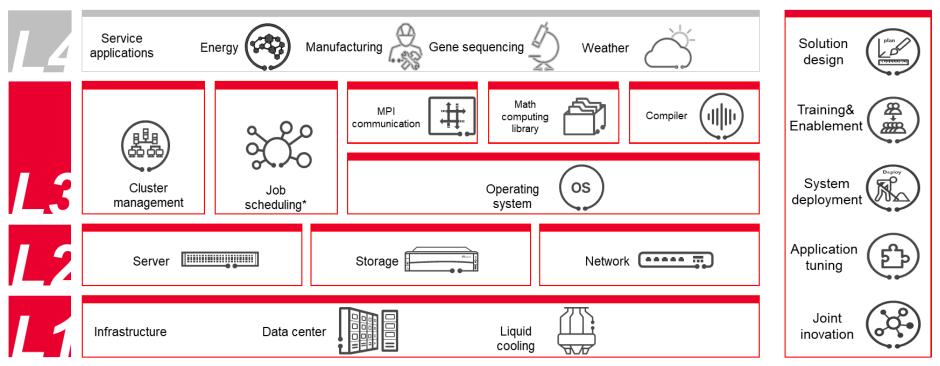
UCX Development in Huawei

Alex Margolin

UCF Annual Workshop, December 2020

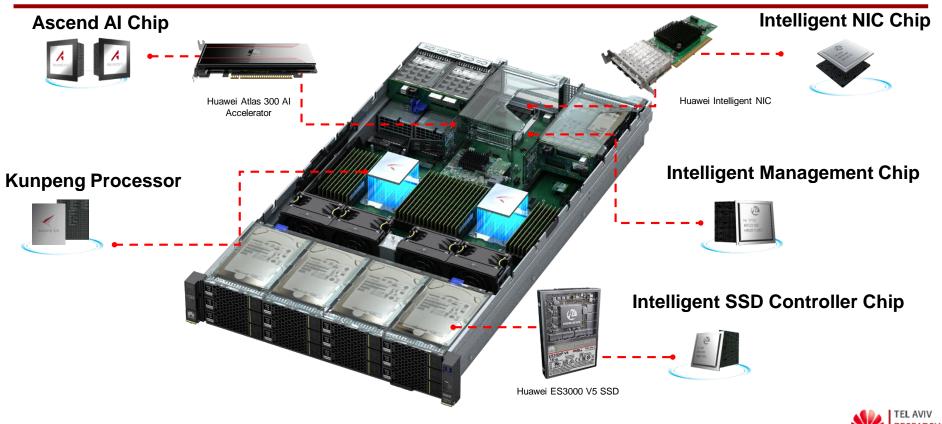
Outline

1. <u>Huawei's HPC activities – Cause and effect</u>


2. Zooming in on UCX (*Today*)

3. Huawei's roadmap for UCX (Tomorrow)

4. Teasers from other talks we'll give this week


A Comprehensive HPC Solution – On All Levels

*Supports TaiShan/x86 hybrid scheduling.

A-Z Server Solution by Huawei

HUAWEI

CENTER

Product Evolution

1st ARM

wireless base

station

2005

High computing-efficient

1st ASIC chip for

optical networks

1991

Provide Huawei Kunpeng Processor being compatible with ARM, TaiShan server and efficient computing solutions to help reduce TCO and time to market

Solid and reliability

Huawei-developed processor cores and server chips 17 years of computing innovation to guarantee high guality

K3

1st ARM mobile

Processor

2009

Openness and innovations

Hi1612

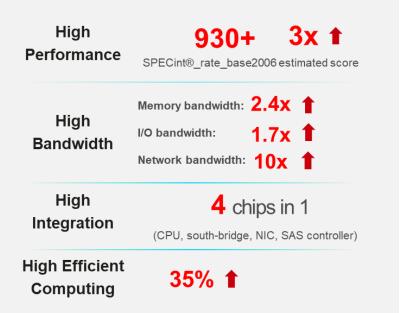
1st 64-bit server class ARM

Processor

2014

Open platform based on mainstream software and hardware in the industry Build the Kunpeng ecosystem to lay a solid foundation for intelligent computing

Kunpeng 916

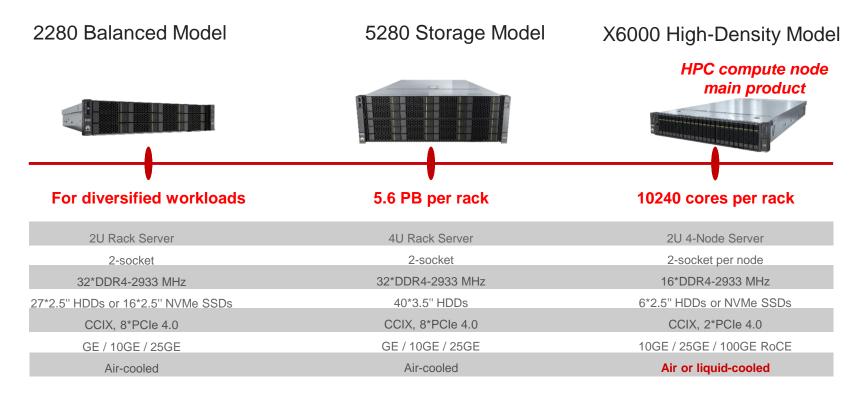

1st ARM Processor supporting multiple sockets 201<u>6</u>

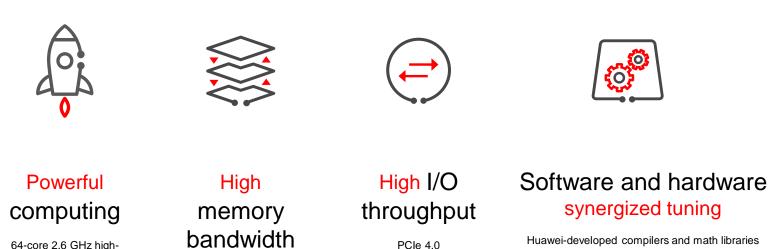
Kunpeng 920

2019

1st 7nm Data center Processor

Latest CPU – Huawei Kunpeng 920


*Tested in Huawei lab, comparison between Kunpeng 920-6426 and last generation Kunpeng 916. Results may vary in different environments


7 nm process | 64 cores | 8 memory controllers | PCIe 4.0 & 100GE

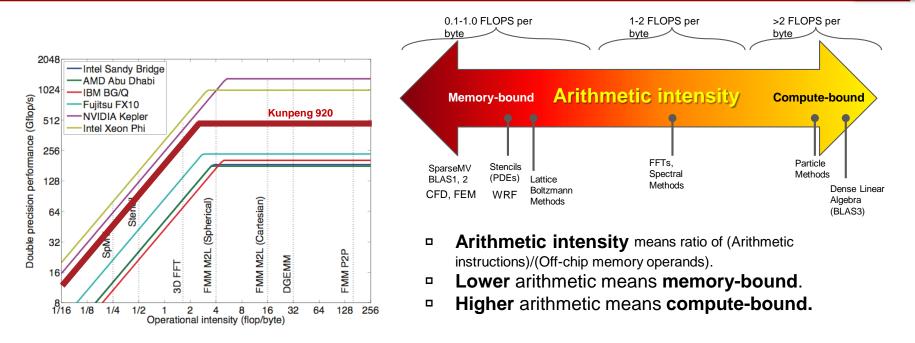
Flexible Form-Factor

64-core 2.6 GHz highperformance processor

8 memory channels

Twice the PCIe 3.0 bandwidth

Huawei-developed compilers and math libraries


Huawei-developed MPI

Computing Performance Network Performance

System Performance

Classifying by Arithmetic Intensity

Using Roofline model analysis, a large number of HPC algorithms and applications are memory-bound. TaiShan HPC targets **memory-bound** applications, such as CAE/CFD, weather, life sciences, and oil & gas.

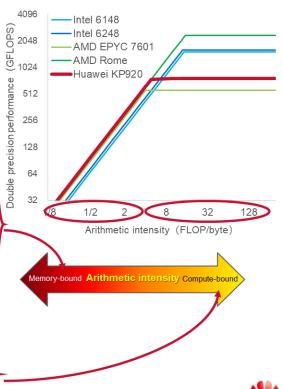
Computing Performance

Network

Performance

System

Performance


Computing Performance

Network Performance System Performance

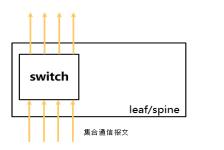
Applications Sample – by Arithmetic Intensity*

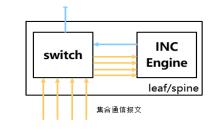
Roofline Model

Application	Scenario	Numerical Method	Arithmetic Intensity	
BCM		Navier-Stokes	0.14	
OpenFoam	CFD	Finite Volumes – Finite Element	0.13	
Turbine		DNS	0.56	
MHD – FDM	Magnete Hudro Dupomica	Finite Difference Method	0.33	
MHD - Spectral	Magneto Hydro Dynamics	Pseudo Spectral Method	0.45	
QSFDM	Seiemology	Spherical 2.5D FDM	0.46	
SEISM3D	Seismology	Finite Difference Method	0.47	
Barotropic	Ocean Circulation Model	Shallow Water Model	0.51	
BQCD	High-Energy-Physics	Hybrid Monte-Carlo	0.45 (DP), 0.9 (SP)	
B-CALM	Electro-Magnetic Sim.	Finite Difference time-domain	0.3 (SP)	
WRF	Weather Forecast model	Stencil code	0.5-1.5	
HEPSPEC	C SPEC2006 selection for HEP (CERN) NAMD, DEALII, SOPLEX, POVRAY, OMNETPP, ASTAR, XALANCBMK		>=0.5	
Gromacs	Molecular dynamics package	Bennett Acceptance Ratios	<1	
KKRNano	Nanotechnology	Korringa-Kohn-Rostoker	4 (DP)	

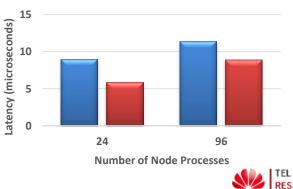
*obviously, this may depend on the input and settings



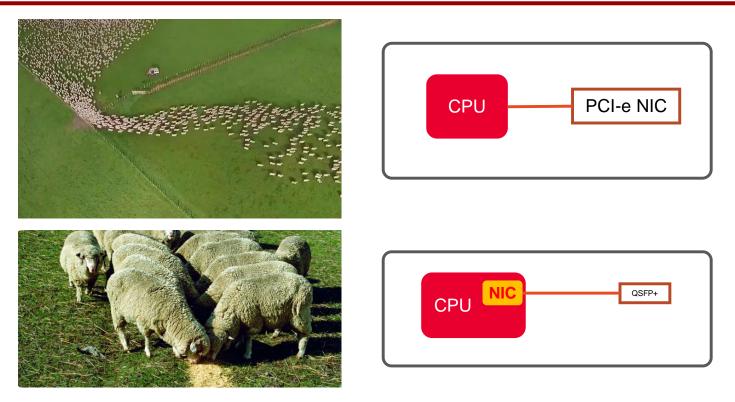

Performance


Industry's First RoCE-based Online Computing Solution

In-network computing (INC):


- Basic principle: add a component in the RoCE switch to offload reduction operations.
- The RoCE-based software and hardware combination solution improves the performance by 30% to 50%.

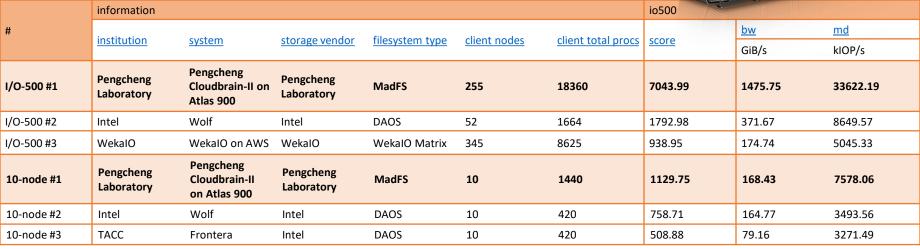
Applying INC for Reduction



Computing Performance

Performance

Network Performance

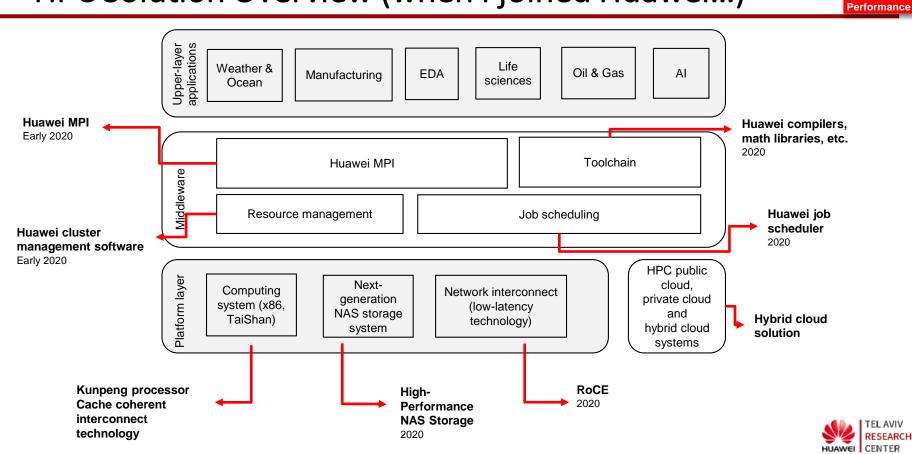

Packets are like sheep... and it's 64 herds!

Now #1 in I/O-500

- Capture user-experienced performance
- Reported performance is representative for:
 - applications with well optimized I/O patterns
 - applications with random-like workloads
 - workloads involving metadata small/objects

Network <u>Per</u>formance

System

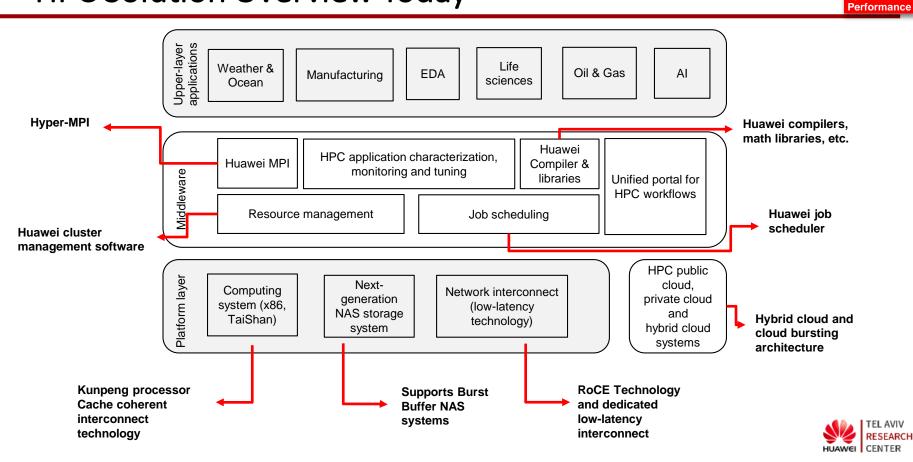

Performance

Computing Performance Network Performance

EARCH

System

HPC Solution Overview (when I joined Huawei...)

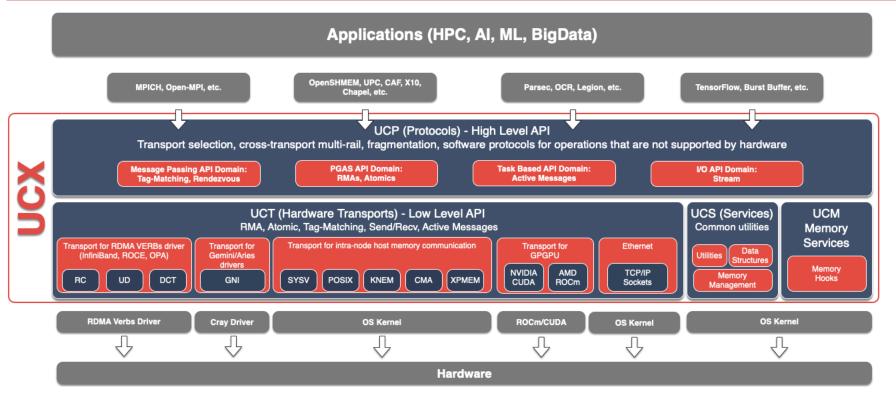


Performance

System

HPC Solution Overview Today

Outline


1. Huawei's HPC activities – Cause and effect

- 2. <u>Zooming in on UCX (Today)</u>
- 3. Huawei's roadmap for UCX (Tomorrow)

4. Teasers from other talks we'll give this week

Gentle Reminder

UCS (Services)

Pointer-Array

- Added *locked-pointer-array*, for thread-safety where applicable
- ~30-35% increase in iteration speed of *foreach()*: 1.46 ns → 1.02 ns
- **10%** faster iteration on x86 (test-specific...), thanks to prefetching trickery

Usage? In UCG*: each column represents a context, and has a pointer-array to hold messages (equiv. to Tag-matching).

Statistics

- Apply filters to reported stats (*over UDP)
- To be continued...

Misc.: timer queue, aligned realloc., GCC fixes, etc.

Slot 0	Slot 1	Slot 2	Slot 3
Α	С	D	
В		Е	
		F	

UCT (Transports)

One-to-many communication

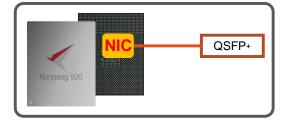
- Expand UCX's P2P focus to cover other types of communication
- Lots of changes are required for this: AM ID range, "exposing" internals, etc.

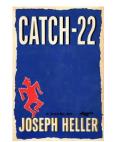
Kunpeng's RoCE support

SPOILER ALER

Basically calls rdma-core, but there are some specifics (not public yet)

RoCE Reachability issues


Suppose you have 2 RoCE ports: do you...


- a. set both IP addresses on the same subnet? (how to choose TX port? + Socket-Direct is unhappy)
- b. set IP addresses on separate subnets? (some ports can't talk to other ports!)

Workaround: ask for RoCEv1 (no direct way, use UCX_IB_GID_INDEX=0)

Not a workaround: Link aggregation (LAG)

Solution: have UCX choose RoCEv1 (PR #5581)

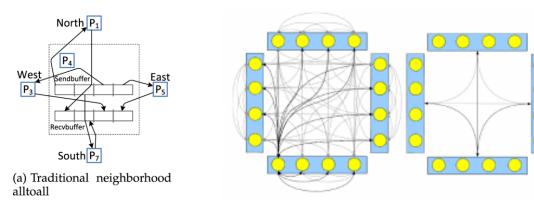
UCP (Protocol)

SPOILER ALERTOne-to-many communication

- Lots of changes are required for this: transport selection, extra API parameters, etc.
- Not much else, since we mostly use UCT directly see next slide...

Q: Why use UCT directly?!

A: For several reasons, incl. mostly overhead considerations and too little control when using UCP. More on this during the UCG talk, later this week.


UCG (Groups)

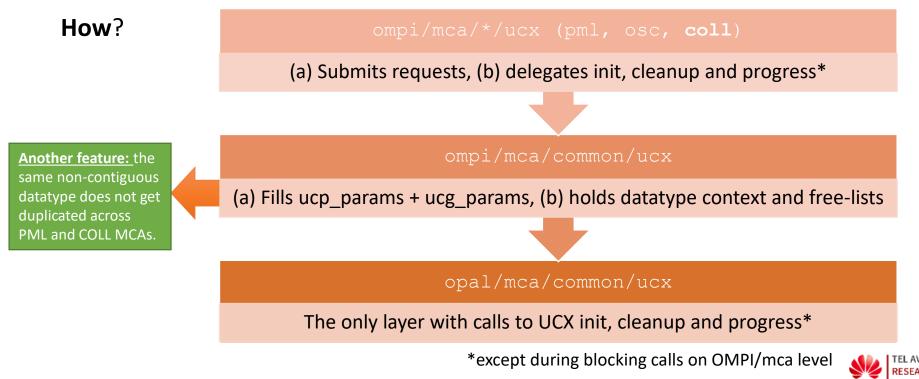
- Huawei's choice for collective operations.
- Will (eventually) support any collective type.

*yes, including **MPIX_Neighbor_alltoallw_init()**

- Shamelessly (ab)uses UCX internals to work faster (incl. internal UCT stuff).
- Lives at https://github.com/openucx/xucg (X for eXperimental, a stable version exists)
- To be continued...

Open-MPI support

• Is there anything missing? Yes, we think so.


Code consolidation among UCX components (for starters)

- ./ompi/mca/coll/ucx
- ./ompi/mca/osc/ucx
- ./ompi/mca/pml/ucx
- ./ompi/mca/common/ucx
- ./opal/mca/common/ucx
- ./oshmem/...
- At least 2-3 additional components are in the planning!
- <u>Better integration with the rest</u>: MPI_T, hints when used by other components...

Open-MPI Component Consolidation

Why? Because on x6000 – we have 256 cores (x2 workers, x2 QPs - no good)

Open-source policy

- Most of what we do is contributed... but not everything gets upstream.
- * Not just UCX / MPI also KNEM, Spack, Open-PMIx / prrte, etc.

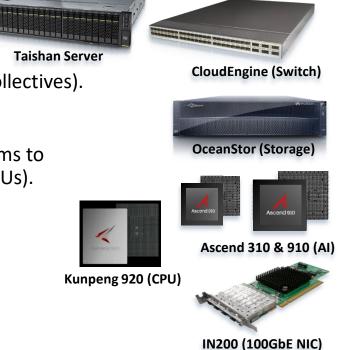
- There are a few exceptions:
- 1. Some hardware-specific code, especially for HW not on the market yet.
- 2. Integration code with some of Huawei's proprietary software (e.g. Storage)
- 3. Code that didn't pass Huawei's code quality checklist **YET**.... takes time!

Outline

1. Huawei's HPC activities – Cause and effect

- 2. Zooming in on UCX (*Today*)
- 3. Huawei's roadmap for UCX (Tomorrow)

4. Teasers from other talks we'll give this week


Integration with other parts of Huawei's HPC solution

SPOILER ALERT

- When you have a hammer...
- 1. Working to get UCX adopted in other products (P2P and collectives).
- 2. Working with the compiler team and the performance teams to optimize the build on our processing elements (not just CPUs).

• This goes both ways – <u>UCX could use more input/hints</u> !

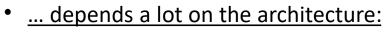
Example: Kunpeng-specific optimizations

<u>The challenge</u>: up to 64 cores per CPU, up to <u>256 per host</u>! This effects:

- algorithm selection,
- resource constraints, (*remember OMPI code consolidation?)
- transport selection,
- ..
- Application performance.

Top features for high PPNs:

- 1. Shared-memory comm. enhancement (P2P and collectives),
- 2. Finer-grained topology awareness (even within a CPU),
- 3. Memory footprint reduction,
- 4. Good old testability at scale.



Concrete Example: Kunpeng-specific optimizations

Proposal: (external) user-space locking library

- Requires some research, to choose the best library to use, for example (publications):
- *"Compact NUMA-aware Locks"* by Dice and Kogan (EuroSys '19)
- "Scalable and practical locking with shuffling" by Kashyap et al. (SOSP '19)

OPTERON PROCESSOR

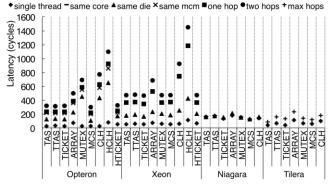


Figure 6: Uncontested lock acquisition latency based on the location of the previous owner of the lock.

								•			
System	Opteron (2.1 GHz)			Xeon (2.13 GHz)		Niagara (1.2 GHz)		Tilera (1.2 GHz)			
Hops	same die	same MCM	one hop	two hops	same die	one hop	two hops	same core	other core	one hop	max hops
loads											
Modified	81	161	172	252	109	289	400		3 24	4 45	65
Owned	83	163	175	254	-	-	-	-	-	-	-
Exclusive	83	163	175	253	92	273	383		3 24	4 45	65
Shared	83	164	176	254	44	223	334		3 24	4 45	65
Invalid	136	237	247	327	355	492	601	17	6 176	5 118	162
						stor	es				
Modified	83	172	191	273	115	320	431	2	4 24	4 57	77
Owned	244	255	286	291	-	-	-	-	-	-	-
Exclusive	83	171	191	271	115	315	425	2	4 24	4 57	77
Shared	246	255	286	296	116	318	428	2	4 24	4 86	106
atomic operations: Compare & Swap (C), Fetch & Increment (F), Test & Set (T), Swap (S)											
Operation	all	all	all	all	all	all	all	C F T S	C F T S	C F T S	C F T S
Modified	110	197	216	296	120	324	430	71 108 64 9	5 66 99 55 90	77 51 70 63	98 71 89 84
Shared	272	283	312	332	113	312	423	76 99 67 9	3 66 99 55 90	124 82 121 95	142 102 141 115

Sun

TILERA

Optimizations Galore!

• New ways to transfer data (even with existing interconnect HW),

• New ways to overlap computation and communication,

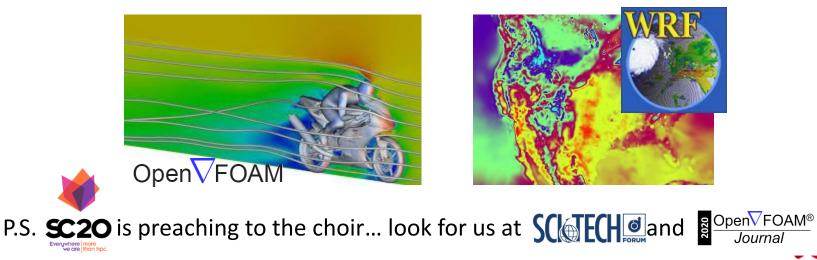
• New ways to detect and optimize common patterns,

• New ways to help applications.

A Bit about my team in Israel...

Appears to be a software engineering team, focused on networking...

Our secret weapon?



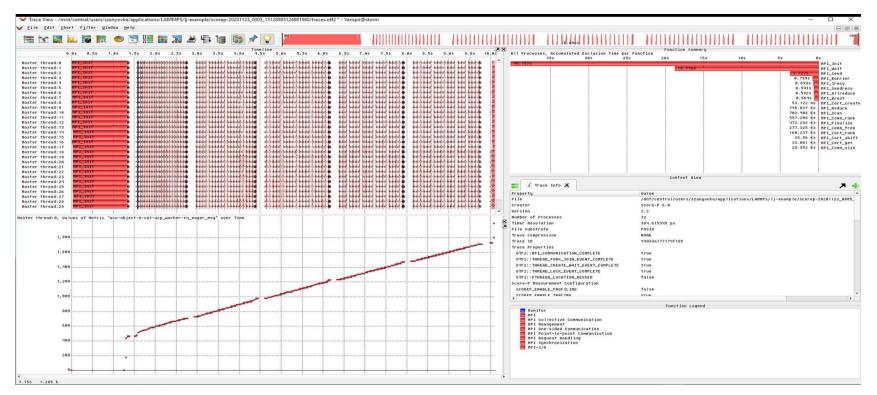
A Bit about my team in Israel...

Appears to be a software engineering team, focused on networking...

Our secret weapon?

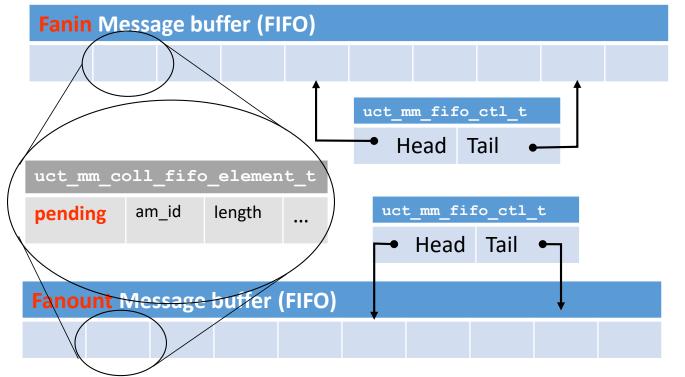
- Half of my team are scientists (not computer scientists...), incl. professors, experts on computational-*: CFD, atmospheric models, molecular dynamics, etc.

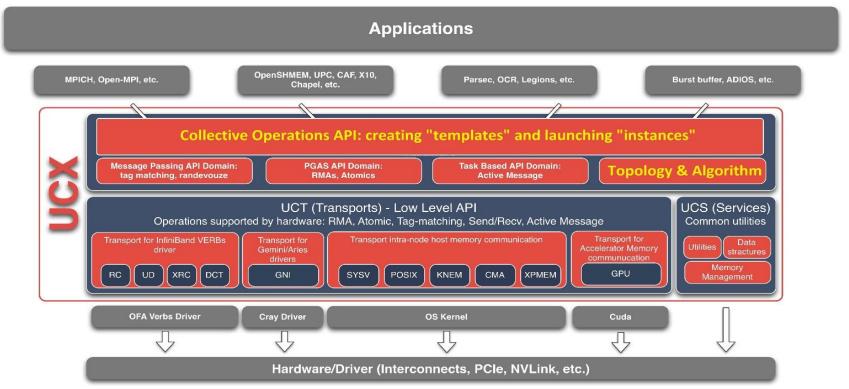
Outline


1. Huawei's HPC activities – Cause and effect

- 2. Zooming in on UCX (*Today*)
- 3. Huawei's roadmap for UCX (Tomorrow)

4. Teasers from other talks we'll give this week


UCX counters in Score-P and Vampir (Day 3, 10:40 CT)


One-to-many UCT transports (Day 4, 9:00 CT)

4 queues needed: **1+2.** The existing P2P queues, for control messages (e.g. Rendezvous). **3. Fanin**, for collectives like reduce or gather. 4. Fanout, for collectives like bcast and scatter.

Until UCC is available - UCG status update (Day 4, 10:00 CT)

www.huawei.com

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

All logos and images displayed in this document are the sole property of their respective copyright holders. No endorsement, partnership, or affiliation is suggested or implied. The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.