
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

• Responsible for care for the
majority of the US Nuclear
Stockpile

• A Serious Enduring Mission
• Not a solved problem space or

anywhere close

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

2019-UCF-UCX-F2F

2019-F2F
Austin Tx.

Stephen Poole

Distinguished Senior Scientist
Chief Architect

swpoole@lanl.gov

LA-UR-19-32281

Data
(Datacenter)

Edge
Compu

te

Edge
Compu

te

Edge
Compu

te

Edge
Compu

te

FOG

Large Scale
Distributed
Analytics

In situ
compute

Early idea for graphic

1/30/20 | 4Los Alamos National Laboratory

Los Alamos has been at the forefront of developing
high-speed network interconnects/technologies

• Los Alamos developed one of the first networks, named
Hydra, to allow common access to the five CDC
machines, 1972

• High-Speed Parallel Interface (HSPI) for inter-computer
communication, 50 Mbit/s, 1979-1982

• HIgh-Performance, Parallel Interface (HIPPI), the first
gigabit network, 1987

• Gigabyte System Network - GSN 1990’s
• Infiniband interconnect came out of ASCI work in the late

1990’s
• Optical interconnects started by ASCI ~2000

– Analysis of optical switches
• QKD – Early 2000’s (Spun off)

– Free space quantum optics
• In Situ using COTS

– Prime candidate for UCX
– SNIC API (SNAPI)

Network Interconnects, 1972-2000’s

Hydra network design, 1972

High-speed interconnects are mostly a standard
commercial off-the-shelf technology now

Data analytics is emerging organically and
rapidly across many programs

Critical Stress
in Subsurface

Energy Dynamics

Real-time Adaptive
Acceleration of Dynamic

Experimental Science

Constellation of CubeSats,
Carrying Ultra-Compact

Spectral Sensors

Machine Learning
Accelerating Discovery
of New Materials, old

Materials

Gravitational Wave
Emissions from

Colliding Black Holes
(LIGO)

Bioinformatics/
Emergent Diseases

Graph Analytics and Event Simulation
• Communications intensive, event/data driven, working set can

exceed main and often have short words, mostly read. (GUPS)
– Worst case is every lookup is not cached, in some random memory location

somewhere in the cluster/system
• Non-cached latency is memory latency ~40-100 cycles
• Worse is across a low latency network ~1000 cycles (non-deterministic)

Follow relationships,
needles in haystacks, etc.

Many forms of Data Science: Analytics, Streaming
Analytics, and some forms of Machine

Learning/Deep Learning/AI (potential in situ)

• Often IO Intensive, Data Parallel works very well, often with small
word sizes, mostly read dominant

• Usually parallelizes well
• IO and Network Bandwidth are sometimes limiters
• We are working in these areas, so HW has to address issues.

Dated results from Grand Unified File Index
has improved by about 5X since this was done

| ‹#›Los Alamos National Laboratory

Trinity

Query

Index
load

Why does LANL care about UCX?

1/30/20 | 10Los Alamos National Laboratory

• LANL is actively engaged in developing “in-network computing”.
• All of the previously mentioned apps can take advantage of UCX
• UCX offers a continuum of deployment spaces.

– NIC/HCA
– Phones/IoT
– Standard applications

• OpenSHMEM, MPI, PGAS
– KVS
– I/O applications

• UCX offers portability across a very diverse portfolio of systems
– We have lots

• UCX is easily adapted to new and development HW
– We are developing new systems and applications/analytics

• We are currently porting some of the LANL mini-apps to UCX
• LANL and key USG partners are supporting UCX for external developers
• LANL is working with O&G customers wrt UCX (See EMC3)
• LANL has on-going development projects with Mellanox
• LANL is fully supportive of an Open SmartNIC API (OpenSNAPI)

– Arm, Mellanox, Broadcom, others?

EMC3 Areas of Interest (where are we doing these
things?)

• Networking
– Next Gen Network Requirements/Design
– Apps/computing/programmability in the

network
• I/O & Storage futures

– Data protection at extremes
– IO Forwarding
– Data motion innovation

• Resilient Computing
– Characterization/prediction

• High Performance Data Analytics
Systems
– True performance benchmarks/measurement

of HPDA systems
• Inexact computing

– Characterization for exploration

11

• System SW
• Next Gen Systems mgmt.

(boot/launch/manage/etc.)
• Leveraging container tech

• HPC Environments
• Launch, Run Time, Monitoring,

Tools innovation
• Application of ML/DL/AI to HPC
• Processor/Memory Complex

• Balanced Application focused
• Power requirements
• Balanced Performance
• Scaling

• Benchmarking and Simulation of
Systems

• Use of Benchmarks/Simulation
against codes to achieve balanced
forward progress

OpenSNAPI (potential options/ideas)

1/30/20 | 12Los Alamos National Laboratory

• Option 1 – Compile and deploy application/parts on SmartNIC
– Already doable. (Summer students)
– Assumes the NIC has an OS, memory, processor. (Just another node)

• Option 2 – Direct calls into “resident” library
– Communication via PCIe/Network interface
– UCX under OpenSHMEM, OpenFAM
– CUDA like?

• Option 3 – Direct ”put” of function calls into NIC Space
– FPGA like.

• #PRAGMA and function calls (Xilinx)
– Assumes driver can set up drop/return spaces.
– IXP2800 like
– PCIe or Network? Both?

• Option 4 – New language?
– P4

• http://lccn.cs.technion.ac.il/wp-content/uploads/2019/02/HeavyHitter-Detection-with-P4-ver-1.2.pdf
– Micro-C
– Define one of our own? (LONG PROCESS)

• Which one do we start with first?
• Do we need to assume the NIC is “host” resident? (Sever or serverless)

– Yes
• PCIe or Network comms

– No
• Network comms

• What about programs/functions to the Switch

Examples of Option #1

1/30/20 | 13Los Alamos National Laboratory

The Jupiter nodes have 10 cores each. Each core has 2 threads, resulting in a total
of 20 Pes per node. Each Jupiter node also has a Bluefield card, which has 16
cores. For this test program we used 10 cores on Jupiter nodes 8 and 9, and all 16
in each of the Bluefield cards, for a total of 52 PEs.

The goal of the program was to explore communication amongst all PEs,
understand the relationship between the host nodes and Bluefield cards, and figure
out the mapping of PE ranks to physical resources.

Note that in order to run the program in parallel, the code must be on both the host
and BF the cards. The program was run using an appfile, which specified how many
cores each node and BF card should use. It was noted that the order of the entries
in the appfile, determines the PE ranks.

In the program itself, two symmetric objects were declared: host_bc, and nic_bc,
both initialized to 0. These variables were utilized to check for proper
synchronization and communication between PE’s. A message was printed from
each PE showing the initial variable values. The variable host_bc was set to 1 by
PE 0 (the first host PE), and the variable nic_bc was set to 2 by PE 20 (the first BF
PE).

A broadcast was then sent to update the values of the two variables on all the PEs.
Finally, once the broadcasts were complete another message was printed to verify
that communication was successful.

Note that the print statements are buffered by the filesystems. However, the
broadcast values in the output prove that in reality the four nodes are working in
parallel. Therefore, it was concluded that all PEs remained synchronized throughout
the process.

The following graphic demonstrates the program’s flow with regard to individual
processes.

TEST PROGRAM #1

jupiter008 jupiter009

jupiter-bf08 jupiter-bf09

PE 0 - 9 PE 20 - 31 PE 10 - 19PE 32 - 51

host_bc =
0

nic_bc = 0

host_bc =
0

nic_bc = 0

host_bc = 0
nic_bc = 0

host_bc =
0

nic_bc = 0

Hello 1 Hello 1 Hello 1 Hello 1

PE 0 -
host_bc =

1

PE 20 -
nic_bc = 2

Broadcast host_bc

Broadcast nic_bc

Hello 2 Hello 2 Hello 2Hello 2

For the second test program we used 20 cores on both Jupiter nodes 8 and 9, and all 16 in each of the Bluefield cards, for a
total of 72 PEs.

The goal of this simple program was to test the use of atomic operations across PEs on the Jupiter hosts and the Bluefield
cards.

Just as the previous test, this program was run using an appfile.

This program atomically adds all PE rank values and stores the result into the symmetric object “sum” on PE 0. Once all rank
values have been added, the result is printed.

Based on the output, it was concluded that atomic operations are correctly executed across all PEs.

The following graphic demonstrates the program’s flow with regard to individual processes.

Test Program #2

jupiter008 jupiter009

jupiter-bf08 jupiter-bf09

PE 0 - 19 PE 40 - 55 PE 20 - 39PE 56 - 71

sum = 0 sum = 0 sum = 0 sum = 0

shmem_in_atomic_ad
d

shmem_in_atomic_ad
d

shmem_in_atomic_ad
d

shmem_in_atomic_ad
d

PE 0 – sum =
2556

Print result

Bluefield System on Chip Architecture.
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf

Los Alamos National Laboratory

Exploring Mellanox Bluefield SmartNICs as Accelerators for Heterogeneous Architectures
Brody Williams*, Liliana Aguirre-Esparza†, Wendy Poole‡, Stephen Poole‡

*Texas Tech University †New Mexico State University ‡Los Alamos National Laboratory

Limited advances in processor technology in recent years have
forced researchers to explore alternative techniques to provide continued
system performance improvements and facilitate further scaling. Many
resulting approaches have shifted away from the strictly CPU-centric
approach used in the past in favor of more heterogeneous architectures.
These architectures often employ added computational components to
support offloading computation from the CPU. Frequently, these
components are also paired with their own local memory in order to
minimize performance degradations associated with data movement.

In this work, we propose an extension to the heterogenous
architecture paradigm using Mellanox Bluefield SmartNICs. These
devices combine state of the art network controllers together with 16
ARM cores into a device that provides unique potential. Herein, we
explore the feasibility of utilizing these SmartNICs as accelerators
capable of offloading both communication routines, as well as
computational kernels, from the CPU.

Motivation

16 ARMv8 Cortex-A72 Cores
• Three-level cache hierarchy
• SkyMesh coherent interconnect
• 128b ARM Neon SIMD execution unit per core

Connect X-5 Subsystem
• Dual Virtual Protocol Interconnect (VPI) ports
• Ethernet/Infiniband at 100Gbps per port
• RDMA & NVMe-oF support

Integrated PCIe Switch
• 32 bifurcated PCI 4.0 lanes

• Configurable as 2x16/4x8/8x4/16x2
• Speeds up to 200Gbps

Memory Controllers
• Supports two channels of 256 GB DDR4 DRAM at 1333MHz

Bluefield System on Chip Architecture

Our preliminary work for this project indicates that acceleration
using Mellanox Bluefield SmartNICs is feasible. Further, our
communication experiment demonstrates that the SmartNICs are fully
compatible with the already widely adopted OpenSHMEM and MPI
standards. Our future work will focus on determining whether or not
these SmartNICs perform effectively as accelerators, and, if so, how best
to optimize and deploy code for SmartNIC acceleration.

In particular, we plan to first optimize several provided Department
of Defense benchmarks using the methods discussed above. We are also
interested in investigating the use of active messages to pass fully
dependence-free code segments to the SmartNICs for execution. Finally,
when more familiar with writing code for SmartNIC acceleration, we
plan to explore developing a library that abstracts SmarNIC acceleration
away from the software developer while providing optimal performance.

Future Work

In order for the SmartNICs to perform effectively as accelerators
at any useful scale, they need to be able to communicate with other
devices. Therefore, as a necessary prerequisite to any application
performance optimization attempt, we first conducted an experiment to
determine compatibility between the ARM cores onboard each
SmartNIC and prominent distributed-address space programming
paradigms.

Communication Experiment
Asynchronous Execution of Task-Parallel Code Segments

• Map host and SmartNIC cores to orthogonal tasks

Acceleration Opportunities

Output from our experiment shows that processor cores are properly
utilized across multiple nodes and SmartNICs. Further, correct broadcast
variable values demonstrate that proper inter-device communication and
synchronization takes place despite buffered print statements. (Note that
the output has been simplified for presentation purposes.)

Experiment Program Flow

Output Screenshot

We would like to thank the Department of Defense for supporting this
project. We are also grateful to Mellanox Technologies, Parks Fields, and
John Snyder of Duke University for their collaborative efforts.

Acknowledgements

Mellanox Testbed – jupiter007 - jupiter010
• Intel Xeon E5-2680 v2 10-core processors
• 64 GB of memory
• Paired Bluefield SmartNIC with 16GB onboard memory
• CentOS 7
• OpenMPI 4.0.1 with Unified Communication X (UCX)

1.6

Inter-Process Communication Calls
• Offload routines to SmartNIC cores
• Prevent blocking of host CPU cores
• Perform buffering and collective computation locally on

SmartNICs

Vectorization of SIMD Operations using Neon Units
• Individual Neon unit per ARM core prevents resource

contention
• Similar to acceleration using GPUs

http://infocenter.arm.com/help/topic/com.arm.doc.dui0489f/DUI0489F_arm_assembler_referenc
e.pdf

Matrix
Multiplication

Example

q
2

VMUL.F32 q2, q1,
q0[0]

http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489f/DUI0489F_arm_assembler_reference.pdf

References
[1] Mellanox Technologies, http://www.mellanox.com/products/bluefield-overview/
[2] OpenSHMEM.org, https://github.com/openshmem-org/openshmem-examples/blob/master/C/sum2n.c

Purpose

Benchmarking
Several profiling tests were performed on a DoD application using
a sampling tool, in order to understand which part of the
application was allocated the most time. The application was
written to support both MPI and OpenSHMEM, therefore each
test was duplicated to account for both platforms. The tests were
performed on both Trinitite and Capulin in order to observe the
effect of memory and number of cores on the application
performance.

As we move into the future computer systems and data center continue to
grow and evolve. With this growth comes the issue of performance.
Today’s data center servers must deal with very large storage and
computer workloads, which spend very valuable CPU cores on
background processing, instead of application computations and
processing. This in turn results in a decrease in performance. For this
reason, it is crucial that we address these issues and find new ways to
relieve the pressure off CPU cores that should be used for program
processing.

Introduction

The BlueField Multicore System On A
Chip (SoC) and Controller Card [1]

Bluefield is a highly integrated system on chip (SoC), which is optimized
for NVMe storage systems, Network Functions Virtualization (NFV),
security systems, and embedded applications. The BlueField SoC was
developed by Mellanox Technologies as a way to address performance,
network and cybersecurity concerns. The chip includes:

The Mellanox BlueField Controller Card is
designed to control and take advantage of
all the features of the BlueField SoC. The
card has a PCIe standard form factor, and
can be used as a high performance
networking card.

Future Work

Investigating the use of BlueField with OpenSHMEM and MPI over OpenUCX
distributed applications

BlueField Testing

jupiter008 jupiter009

jupiter-bf08 jupiter-bf09

PE 0 - 19 PE 40 - 55 PE 20 - 39PE 56 - 71

sum = 0 sum = 0 sum = 0 sum = 0

shmem_in_atomic_add shmem_in_atomic_add shmem_in_atomic_add shmem_in_atomic_add

PE 0 – sum = 2556

Print result

A simple program was used to test the use of atomic operations across PEs on the host
nodes and the BF cards. The code was adapted from a program found on the official
OpenSHMEM website.[2]

For the test program,
shown in Figure 5 we
used 20 cores on both
Jupiter nodes 8 and 9,
and all 16 in each of the
Bluefield cards, for a
total of 72 PEs. It was
noted that in order to
run the program in
parallel, the code must
be on both the host and
BF the cards. The
program was ran using
an appfile specifying
how many cores each
node and BF card
should use to run the
program. The testAfter the running the program it was noted that the order of the entries in the appfile,
determines the PE ranks. Based on the output, it was concluded that atomic operations
are correctly executed across all PEs. Figure 6 demonstrates the program’s flow with
regard to individual processes.

The objective of this summer’s research was to begin the development of
a methodology that will allow us to profile, gather and analyze any
prospective computations from kernel from both the Department of
Defense (DoD) and LANL, that may be offloaded to the BlueField
Multicore System of Chip to improve performance. The goal was to build
and run the provided benchmark, which is written with both MPI and
OpenSHMEM as communication libraries and gain an understanding of
the application and then potentially take the initial steps towards creating
a library for Smart NICs.

Goal

Profiling Results
The tests on Trinitite revealed no clear pattern. The results varied
based on the memory percentage and the program arguments.
However, the results on Capulin yielded a clearer pattern. Based
on these results it was concluded that time spent on
communication between PEs using both OpenSHMEM and MPI
increased in correlation to the number of cores. The profiling
results for test one with OpenSHMEM at 25%, 50%, and 75%
memory, using 2, 4 and 8 Capulin nodes are displayed in Figure 4.
A similar pattern was shown for tests 2 and 3.

Figure 1. BlueField
Architecture

Figure 2. BlueField
SoC

Figure 3. BlueField Controller
Card

The first set of tests were performed on Trinitite and Capulin
using 2 nodes. Each node on Trinitite has 128GB of memory and
32 Haswell cores, and each node on Capulin has 256GB of
memory and 56 cores. The tests were done using 25%, 50%, and
75% memory. For each memory percentage three different tests
were implemented using diverse program arguments. A second set
of tests was performed using 4 nodes, and a third using 8 nodes.

Methodology

6.
20
%

7.
00
%

8.
40
%

25
.7
0…

28
.4
0…

30
.8
0…

68
.0
0…

64
.5
0…

60
.7
0…0.00%200.00%

25
%

75
%

Memory %

4 …
SHMEM

5.
10
%

5.
50
%

5.
10
%

23
.5
0…

20
.0
0…

22
.2
0…

71
.3
0…

74
.5
0…

72
.6
0…0.00%200.00%

25
%

75
%

Memory %

8 …
SHMEM

15
.3
0…

13
.4
0…

14
.7
0…

57
.4
0…

50
.0
0…

55
.4
0…

27
.0
0…

36
.5
0…

29
.8
0…0.00%200.00%

25
%

75
%

Memory %

2 …
SHMEM

0.00%100.00%

25
%

75
%

MEMOR

4 …
User…

0.00%100.00%

25
%

75
%

MEMOR

8 …
User…

-20.00%80.00%

25
%

75
%

MEMOR

2 …
User…

Figure 4. Capulin Test 1 Results

The system used to perform these tests was made up of several types of nodes. For our
purposes we used the Jupiter nodes with BlueField cards attached. The Jupiter nodes
consist of 10 cores, each with 2 threads, resulting on a total of 20 PEs per node. Each
Jupiter node also has one BlueField controller card and SoC, which consists of 16 cores.

Testing Environment

Results and Observations

program atomically adds all PE rank values and stores the result into the symmetric
object “sum” on PE 0. Once all rank values have been added, the result is printed.

Test Program

Figure 5. Test Program Code

Figure 6. Program Flow Graphic

The profiling data gathered gives us a greater understanding of the provided application
and allows us to hypothesize about what computations may be offloaded to improve
performance. Based on the results, a good place to start offloading is communication
computations. Furthermore, the information gathered about how the BlueField relates to
the host node will allow us to find the best way to break down the application to so the
BlueField can handle specific computation in a way that actually improves performance.
The next step would be to perform the same profiling tests from Trinitite and Capulin on a
system equipped with BF cards and compare those results to the previously gathered
information.

Acknowledgements

Liliana Aguirre Esparza, New Mexico State University
lili91@nmsu.edu

Mentor: Wendy K. Poole, HPC-ENV
wkpoole@lanl.gov

Co-mentor: Steven Poole, ALDSC/HPC
swpoole@lanl.gov

BlueField SoC Features

Controller Card

I would like to acknowledge the mentoring I have received from Wendy Poole, Steven
Poole, and Brody Williams. I also would like to acknowledge the Department of Defense
as well as Mellanox Technologies for the support to this project.

• a set of 64-bit Armv8 A72
core CPUs,

• a PCIe switch,
• and a network controller.

The BlueField SoC was
developed as a solution for
building Just-A-Bunch-Of-
Flash (JBOF) systems, All-
Flash-Array and storage
applications for NVMe over
Fabrics. The PCIe switch on
the BlueField supports up to 32
lanes of both Gen3 and Gen4,
which allows
transfers of more than 200Gb/sec of data to and from the SSDs.

VPIC Problem (Courtesy Brad Settlemyer)

1/30/20 | 20Los Alamos National Laboratory

• Problem Statement

– Consider the problem of tracking a spatially correlated energy peak through space,
i.e. tracking an energy wave. In a particle-in-cell code, such as LANL’s VPIC, the
energy values are calculated using trillions of small particles (approximately 32 Bytes
each) that move between processes as the simulation progresses. In order to
identify all energy peaks at a timestep it is necessary to understand the energy
distribution of the particles. The approach most commonly used in practice is to post-
process the output data sets and construct energy histograms. The primary
challenge in constructing an energy histogram is that the histogram bin widths are
typically impossible to estimate in advance. To determine appropriate bin widths
during post-processing requires using computational resources similar to the original
simulation in order to efficiently post-process all of the simulation output. Another
alternative is to simply sample some small percentage of the particles and estimating
an empirical distribution based on the sampled particles. This technique is
problematic because simulations are typically constrained by memory use, and both
the all-to-all communications and buffering required to sample the energy space are
expensive to achieve in practice.

Host: Rank 0 Host: Rank 1

BF:
Rank 2 Network BF:

Rank 3

MPI_Send(particles, …, rank=0)

MPI_Send(particles,…, ra
nk=2)

MPI_COMM_WORLD

Host Communicator

BF Communicator

MPI_Allreduce(bin_data, …, BF Communicator)
particles particles

Integrating Bluefields into VPIC (Jack Snyder – Mellanox/DUKE/LANL)

• BF’s are assigned an MPI Rank like any other host
• Particles are exchanged with MPI when they cross boundaries
• BF is also sent particles, which are then binned
• BF calculates Moments for each particle
• BF reconstructs quantiles of particle distribution from Moments

Moment
Moment2

Moment…

Momentn

Moment
Moment2

Moment…

Momentn

Option #2 (Some potential instructions)

1/30/20 | 22Los Alamos National Laboratory

SNICresult status = snicInit(0);
status = snicDeviceGet(&dev, 0);
status = snicDeviceComputeCapability(&major,&minor,dev);
snicGetDeviceCount(&device_count);
snicSetDevice(device);
snicGetDevice(&device);
snicGetDeviceProperties(&deviceProp,device);
snicDeviceReset();
snicDriverGetVersion (int* driverVersion)
snicDeviceGetAttribute (int* pi, snicDEVICE attrib, snicDEVICE dev)
snicDeviceGetName (char* name, int len, snicDEVICE dev)
snicDeviceTotalMem (size_t* bytes, snicDEVICE dev)

NVIDIA has MANY great potential examples for this mode.
I copied these from NVIDIA docs.

Option #3 (Some potential examples)

1/30/20 | 23Los Alamos National Laboratory

• http://xillybus.com/tutorials/vivado-hls-c-fpga-howto-2
• Can use #pragma

void snicBUS_wrapper(int *in, int *out)
{
#pragma AP interface ap_fifo port=in
#pragma AP interface ap_fifo port=out
#pragma AP interface ap_ctrl_none port=return

snic_puts("Hello, world\n"); // Handle input data
}

• Can write directly to device
• fdr = open("/dev/snicBUS_read_32", O_RDONLY);
• fdw = open("/dev/snicBUS_write_32", O_WRONLY);
• write(fdw, (void *) &tologic, sizeof(tologic));
• read(fdr, (void *) &fromlogic, sizeof(fromlogic));

• Mellanox and others have many examples on how to use at this level.

http://xillybus.com/tutorials/vivado-hls-c-fpga-howto-2

Option #4 (Some potential examples)

1/30/20 | 24Los Alamos National Laboratory

• Do we define our own? (Language)
• Do we adopt something like P4 or Micro-C
• UNO

• SDN-controlled NF offload architecture (wisc)
• https://wisr.cs.wisc.edu/papers/p506-le.pdf

• Floem
• a language, compiler, and runtime — for programming NIC-accelerated appli- cations.
• https://www.usenix.org/system/files/osdi18-phothilimthana.pdf

• What about Python?
• What can we learn from SDN?

• Can we adopt/adapt a larger communities work?
• How do we make it fit best with UCX?
• https://blog.mellanox.com/2018/09/why-you-need-smart-nic-use-cases/
• Fund a summer intern(s) to develop summary paper(s) on:

• Vendors
• Languages
• Functionalities
• Classifications

https://wisr.cs.wisc.edu/papers/p506-le.pdf
https://blog.mellanox.com/2018/09/why-you-need-smart-nic-use-cases/

Potential future UCX Diagram

| ‹#›Los Alamos National Laboratory

OpenSNAPI OpenPhone

Where would OpenSNAPI fit in the UCX “eco-system”?

OpenSNAPI

Contributors

1/30/20 | 26Los Alamos National Laboratory

• Bill Archer Physics
• Jerry Brock Dep. ASC PM
• Jim Cruz Graphics Design
• AnnMarie Cutler Graphics
• Gary Grider All Things I/O - EMC3

• Paul Henning Algorithms
• Beth Kaspar ALDSC PM
• Wendy Poole Analytics
• John Sarrao Physics
• Pavel Shamis Arm
• Janet Mercer-Smith R&D100
• Kevin Sutton Photographer
• Justin Warner R&D100

• Liliana A. Esparza LANL Summer Intern (NMSU)
• John “Jack” Snyder Mellanox Summer Intern (Duke)
• Brody Williams LANL Summer Intern (TxTech)
• Richard Graham Mentor
• Steve Poole Mentor
• Wendy Poole Mentor

Questions?

| ‹#›Los Alamos National Laboratory

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

