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Los Alamos has been at the forefront of developing 
high-speed network interconnects/technologies

• Los Alamos developed one of the first networks, named 
Hydra, to allow common access to the five CDC 
machines, 1972

• High-Speed Parallel Interface (HSPI) for inter-computer 
communication, 50 Mbit/s, 1979-1982

• HIgh-Performance, Parallel Interface (HIPPI), the first 
gigabit network, 1987

• Gigabyte System Network - GSN 1990’s
• Infiniband interconnect came out of ASCI work in the late 

1990’s
• Optical interconnects started by ASCI ~2000

– Analysis of optical switches
• QKD – Early 2000’s (Spun off)

– Free space quantum optics
• In Situ using COTS

– Prime candidate for UCX
– SNIC API (SNAPI)

Network Interconnects, 1972-2000’s

Hydra network design, 1972

High-speed interconnects are mostly a standard 
commercial off-the-shelf technology now 



Data analytics is emerging organically and 
rapidly across many programs

Critical Stress 
in Subsurface 

Energy Dynamics

Real-time Adaptive 
Acceleration of Dynamic 

Experimental Science

Constellation of CubeSats, 
Carrying Ultra-Compact 

Spectral Sensors

Machine Learning 
Accelerating Discovery 
of New Materials, old 

Materials

Gravitational Wave 
Emissions from 

Colliding Black Holes
(LIGO)

Bioinformatics/
Emergent Diseases



Graph Analytics and Event Simulation
• Communications intensive, event/data driven,  working set can 

exceed main and often have short words, mostly read. (GUPS)
– Worst case is every lookup is not cached, in some random memory location 

somewhere in the cluster/system
• Non-cached latency is memory latency  ~40-100 cycles
• Worse is across a low latency network ~1000 cycles (non-deterministic)

Follow relationships, 
needles in haystacks, etc.



Many forms of Data Science:  Analytics, Streaming 
Analytics, and some forms of Machine 

Learning/Deep Learning/AI (potential in situ)

• Often IO Intensive, Data Parallel works very well, often with small 
word sizes, mostly read dominant

• Usually parallelizes well
• IO and Network Bandwidth are sometimes limiters
• We are working in these areas, so HW has to address issues.



Dated results from Grand Unified File Index
has improved by about 5X since this was done

|   ‹#›Los Alamos National Laboratory
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Index 
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Why does LANL care about UCX?
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• LANL is actively engaged in developing “in-network computing”.
• All of the previously mentioned apps can take advantage of UCX
• UCX offers a continuum of deployment spaces.

– NIC/HCA
– Phones/IoT
– Standard applications

• OpenSHMEM, MPI, PGAS
– KVS
– I/O applications

• UCX offers portability across a very diverse portfolio of systems
– We have lots

• UCX is easily adapted to new and development HW
– We are developing new systems and applications/analytics

• We are currently porting some of the LANL mini-apps to UCX
• LANL and key USG partners are supporting UCX for external developers
• LANL is working with O&G customers wrt UCX (See EMC3)
• LANL has on-going development projects with Mellanox
• LANL is fully supportive of an Open SmartNIC API (OpenSNAPI)

– Arm, Mellanox, Broadcom, others?



EMC3 Areas of Interest (where are we doing these 
things?)

• Networking
– Next Gen Network Requirements/Design
– Apps/computing/programmability in the 

network
• I/O & Storage futures

– Data protection at extremes
– IO Forwarding
– Data motion innovation

• Resilient Computing
– Characterization/prediction

• High Performance Data Analytics 
Systems
– True performance benchmarks/measurement 

of HPDA systems
• Inexact computing

– Characterization for exploration

11

• System SW
• Next Gen Systems mgmt. 

(boot/launch/manage/etc.)
• Leveraging container tech

• HPC Environments
• Launch, Run Time, Monitoring, 

Tools innovation
• Application of ML/DL/AI to HPC
• Processor/Memory Complex

• Balanced Application focused
• Power requirements
• Balanced Performance
• Scaling

• Benchmarking and Simulation of 
Systems

• Use of Benchmarks/Simulation 
against codes to achieve balanced  
forward progress



OpenSNAPI (potential options/ideas)
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• Option 1 – Compile and deploy application/parts on SmartNIC
– Already doable. (Summer students)
– Assumes the NIC has an OS, memory, processor. (Just another node)

• Option 2 – Direct calls into “resident” library
– Communication via PCIe/Network interface
– UCX under OpenSHMEM, OpenFAM
– CUDA like?

• Option 3 – Direct ”put” of function calls into NIC Space
– FPGA like.

• #PRAGMA and function calls (Xilinx)
– Assumes driver can set up drop/return spaces.
– IXP2800 like
– PCIe or Network? Both?

• Option 4 – New language?
– P4

• http://lccn.cs.technion.ac.il/wp-content/uploads/2019/02/HeavyHitter-Detection-with-P4-ver-1.2.pdf
– Micro-C
– Define one of our own? (LONG PROCESS)

• Which one do we start with first?
• Do we need to assume the NIC is “host” resident? (Sever or serverless)

– Yes
• PCIe or Network comms

– No
• Network comms

• What about programs/functions to the Switch



Examples of Option #1
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The Jupiter nodes have 10 cores each. Each core has 2 threads, resulting in a total 
of 20 Pes per node. Each Jupiter node also has a Bluefield card, which has 16 
cores. For this test program we used 10 cores on Jupiter nodes 8 and 9, and all 16 
in each of the Bluefield cards, for a total of 52 PEs. 

The goal of the program was to explore communication amongst all PEs, 
understand the relationship between the host nodes and Bluefield cards, and figure 
out the mapping of PE ranks to physical resources. 

Note that in order to run the program in parallel, the code must be on both the host 
and BF the cards. The program was run using an appfile, which specified how many 
cores each node and BF card should use. It was noted that the order of the entries 
in the appfile, determines the PE ranks.

In the program itself, two symmetric objects were declared: host_bc, and nic_bc, 
both initialized to 0. These variables were utilized to check for proper 
synchronization and communication between PE’s. A message was printed from 
each PE showing the initial variable values. The variable host_bc was set to 1 by 
PE 0 (the first host PE), and the variable nic_bc was set to 2 by PE 20 (the first BF 
PE). 

A broadcast was then sent to update the values of the two variables on all the PEs. 
Finally, once the broadcasts were complete another message was printed to verify 
that communication was successful. 

Note that the print statements are buffered by the filesystems. However, the 
broadcast values in the output prove that in reality the four nodes are working in 
parallel. Therefore, it was concluded that all PEs remained synchronized throughout 
the process. 

The following graphic demonstrates the program’s flow with regard to individual 
processes.

TEST PROGRAM #1



jupiter008 jupiter009

jupiter-bf08 jupiter-bf09

PE 0 - 9 PE 20 - 31 PE 10 - 19PE 32 - 51

host_bc = 
0

nic_bc = 0

host_bc = 
0

nic_bc = 0

host_bc = 0
nic_bc = 0

host_bc = 
0

nic_bc = 0

Hello 1 Hello 1 Hello 1 Hello 1

PE 0 -
host_bc = 

1

PE 20  -
nic_bc = 2

Broadcast host_bc

Broadcast nic_bc

Hello 2 Hello 2 Hello 2Hello 2



For the second test program we used 20 cores on both Jupiter nodes 8 and 9, and all 16 in each of the Bluefield cards, for a 
total of 72 PEs. 

The goal of this simple program was to test the use of atomic operations across PEs on the Jupiter hosts and the Bluefield 
cards. 

Just as the previous test, this program was run using an appfile. 

This program atomically adds all PE rank values and stores the result into the symmetric object “sum” on PE 0. Once all rank 
values have been added, the result is printed. 

Based on the output, it was concluded that atomic operations are correctly executed across all PEs.  

The following graphic demonstrates the program’s flow with regard to individual processes.

Test Program #2



jupiter008 jupiter009

jupiter-bf08 jupiter-bf09

PE 0 - 19 PE 40 - 55 PE 20 - 39PE 56 - 71

sum = 0 sum = 0 sum = 0 sum = 0

shmem_in_atomic_ad
d

shmem_in_atomic_ad
d

shmem_in_atomic_ad
d

shmem_in_atomic_ad
d

PE 0 – sum = 
2556 

Print result



Bluefield System on Chip Architecture.
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
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Exploring Mellanox Bluefield SmartNICs as Accelerators for Heterogeneous Architectures
Brody Williams*, Liliana Aguirre-Esparza†, Wendy Poole‡, Stephen Poole‡

*Texas Tech University †New Mexico State University ‡Los Alamos National Laboratory

Limited advances in processor technology in recent years have 
forced researchers to explore alternative techniques to provide continued 
system performance improvements and facilitate further scaling. Many 
resulting approaches have shifted away from the strictly CPU-centric 
approach used in the past in favor of more heterogeneous architectures. 
These architectures often employ added computational components to 
support offloading computation from the CPU. Frequently, these 
components are also paired with their own local memory in order to 
minimize performance degradations associated with data movement. 

In this work, we propose an extension to the heterogenous 
architecture paradigm using Mellanox Bluefield SmartNICs. These 
devices combine state of the art network controllers together with 16 
ARM cores into a device that provides unique potential. Herein, we 
explore the feasibility of utilizing these SmartNICs as accelerators 
capable of offloading both communication routines, as well as 
computational kernels, from the CPU.

Motivation

16 ARMv8 Cortex-A72 Cores
• Three-level cache hierarchy
• SkyMesh coherent interconnect
• 128b ARM Neon SIMD execution unit per core

Connect X-5 Subsystem
• Dual Virtual Protocol Interconnect (VPI) ports
• Ethernet/Infiniband at 100Gbps per port
• RDMA & NVMe-oF support

Integrated PCIe Switch
• 32 bifurcated PCI 4.0 lanes

• Configurable as 2x16/4x8/8x4/16x2
• Speeds up to 200Gbps

Memory Controllers 
• Supports two channels of 256 GB DDR4 DRAM at 1333MHz

Bluefield System on Chip Architecture

Our preliminary work for this project indicates that acceleration 
using Mellanox Bluefield SmartNICs is feasible. Further, our 
communication experiment demonstrates that the SmartNICs are fully 
compatible with the already widely adopted OpenSHMEM and MPI 
standards. Our future work will focus on determining whether or not 
these SmartNICs perform effectively as accelerators, and, if so, how best 
to optimize and deploy code for SmartNIC acceleration.

In particular, we plan to first optimize several provided Department 
of Defense benchmarks using the methods discussed above. We are also 
interested in investigating the use of active messages to pass fully 
dependence-free code segments to the SmartNICs for execution. Finally, 
when more familiar with writing code for SmartNIC acceleration, we 
plan to explore developing a library that abstracts SmarNIC acceleration 
away from the software developer while providing optimal performance.

Future Work

In order for the SmartNICs to perform effectively as accelerators 
at any useful scale, they need to be able to communicate with other 
devices. Therefore, as a necessary prerequisite to any application 
performance optimization attempt, we first conducted an experiment to 
determine compatibility between the ARM cores onboard each 
SmartNIC and prominent distributed-address space programming 
paradigms.

Communication Experiment
Asynchronous Execution of Task-Parallel Code Segments

• Map host and SmartNIC cores to orthogonal tasks

Acceleration Opportunities

Output from our experiment shows that processor cores are properly 
utilized across multiple nodes and SmartNICs. Further, correct broadcast 
variable values demonstrate that proper inter-device communication and 
synchronization takes place despite buffered print statements. (Note that 
the output has been simplified for presentation purposes.)

Experiment Program Flow

Output Screenshot

We would like to thank the Department of Defense for supporting this 
project. We are also grateful to Mellanox Technologies, Parks Fields, and 
John Snyder of Duke University for their collaborative efforts.
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Mellanox Testbed – jupiter007 - jupiter010
• Intel Xeon E5-2680 v2 10-core processors
• 64 GB of memory
• Paired Bluefield SmartNIC with 16GB onboard memory
• CentOS 7
• OpenMPI 4.0.1 with Unified Communication X (UCX) 

1.6

Inter-Process Communication Calls
• Offload routines to SmartNIC cores
• Prevent blocking of host CPU cores
• Perform buffering and collective computation locally on 

SmartNICs

Vectorization of SIMD Operations using Neon Units
• Individual Neon unit per ARM core prevents resource 

contention
• Similar to acceleration using GPUs

http://infocenter.arm.com/help/topic/com.arm.doc.dui0489f/DUI0489F_arm_assembler_referenc
e.pdf

Matrix 
Multiplication 

Example

q
2

VMUL.F32 q2, q1, 
q0[0]

http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489f/DUI0489F_arm_assembler_reference.pdf
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Purpose

Benchmarking
Several profiling tests were performed on a DoD application using 
a sampling tool, in order to understand which part of the 
application was allocated the most time. The application was 
written to support both MPI and OpenSHMEM, therefore each 
test was duplicated to account for both platforms. The tests were 
performed on both Trinitite and Capulin in order to observe the 
effect of memory and number of cores on the application 
performance.

As we move into the future computer systems and data center continue to 
grow and evolve. With this growth comes the issue of performance. 
Today’s data center servers must deal with very large storage and 
computer workloads, which spend very valuable CPU cores on 
background processing, instead of application computations and 
processing. This in turn results in a decrease in performance. For this 
reason, it is crucial that we address these issues and find new ways to 
relieve the pressure off CPU cores that should be used for program 
processing.

Introduction

The BlueField Multicore System On A 
Chip (SoC) and Controller Card [1]

Bluefield is a highly integrated system on chip  (SoC), which is optimized 
for NVMe storage systems, Network Functions Virtualization (NFV), 
security systems, and embedded applications. The BlueField SoC was 
developed by Mellanox Technologies as a way to address performance, 
network and cybersecurity concerns. The chip includes:

The Mellanox BlueField Controller Card is 
designed to control and take advantage of 
all the features of the BlueField SoC. The 
card has a PCIe standard form factor, and 
can be used as a high performance 
networking card.

Future Work

Investigating the use of BlueField with OpenSHMEM and MPI over OpenUCX
distributed applications 

BlueField Testing

jupiter008 jupiter009

jupiter-bf08 jupiter-bf09

PE 0 - 19 PE 40 - 55 PE 20 - 39PE 56 - 71

sum  = 0 sum  = 0 sum  = 0 sum  = 0

shmem_in_atomic_add shmem_in_atomic_add shmem_in_atomic_add shmem_in_atomic_add

PE 0 – sum = 2556 

Print result

A simple program was used to test the use of atomic operations across PEs on the host 
nodes and the BF cards. The code was adapted from a program found on the official 
OpenSHMEM website.[2]

For the test program, 
shown in Figure 5 we 
used 20 cores on both 
Jupiter nodes 8 and 9, 
and all 16 in each of the 
Bluefield cards, for a 
total of 72 PEs. It was 
noted that in order to 
run the program in 
parallel, the code must 
be on both the host and 
BF the cards. The 
program was ran using 
an appfile specifying 
how many cores each 
node and BF card 
should use to run the 
program. The testAfter the running the program it was noted that the order of the entries in the appfile, 
determines the PE ranks. Based on the output, it was concluded that atomic operations 
are correctly executed across all PEs. Figure 6 demonstrates the program’s flow with 
regard to individual processes.

The objective of this summer’s research was to begin the development of 
a methodology that will allow us to profile, gather and analyze any 
prospective computations from kernel from both the Department of 
Defense (DoD) and LANL, that may be offloaded to the BlueField 
Multicore System of Chip to improve performance. The goal was to build 
and run the provided benchmark, which is written with both MPI and 
OpenSHMEM as communication libraries and gain an understanding of 
the application and then potentially take the initial steps towards creating 
a library for Smart NICs.

Goal

Profiling Results
The tests on Trinitite revealed no clear pattern. The results varied 
based on the memory percentage and the program arguments. 
However, the results on Capulin yielded a clearer pattern. Based 
on these results it was concluded that time spent on 
communication between PEs using both OpenSHMEM and MPI 
increased in correlation to the number of cores. The profiling 
results for test one with OpenSHMEM at 25%, 50%, and 75% 
memory, using 2, 4 and 8 Capulin nodes are displayed in Figure 4. 
A similar pattern was shown for tests 2 and 3. 

Figure 1. BlueField 
Architecture

Figure 2. BlueField 
SoC 

Figure 3. BlueField Controller 
Card

The first set of tests were performed on Trinitite and Capulin
using 2 nodes. Each node on Trinitite has 128GB of memory and 
32 Haswell cores, and each node on Capulin has 256GB of 
memory and 56 cores. The tests were done using 25%, 50%, and 
75% memory. For each memory percentage three different tests 
were implemented using diverse program arguments. A second set 
of tests was performed using 4 nodes, and a third using 8 nodes. 

Methodology
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Figure 4. Capulin Test 1 Results

The system used to perform these tests was made up of several types of nodes. For our 
purposes we used the Jupiter nodes with BlueField cards attached. The Jupiter nodes 
consist of 10 cores, each with 2 threads, resulting on a total of 20 PEs per node. Each 
Jupiter node also has one BlueField controller card and SoC, which consists of 16 cores. 

Testing Environment

Results and Observations

program atomically adds all PE rank values and stores the result into the symmetric 
object “sum” on PE 0. Once all rank values have been added, the result is printed. 

Test Program

Figure 5. Test Program Code

Figure 6. Program Flow Graphic

The profiling data gathered gives us a greater understanding of the provided application 
and allows us to hypothesize about what computations may be offloaded to improve 
performance. Based on the results, a good place to start offloading is communication 
computations. Furthermore, the information gathered about how the BlueField relates to 
the host node will allow us to find the best way to break down the application to so the 
BlueField can handle specific computation in a way that actually improves performance. 
The next step would be to perform the same profiling tests from Trinitite and Capulin on a 
system equipped with BF cards and compare those results to the previously gathered 
information. 
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• a set of 64-bit Armv8 A72 
core CPUs, 

• a PCIe switch,
• and a network controller. 

The BlueField SoC was 
developed as a solution for 
building Just-A-Bunch-Of-
Flash (JBOF) systems, All-
Flash-Array and storage 
applications for NVMe over 
Fabrics. The PCIe switch on 
the BlueField supports up to 32 
lanes of both Gen3 and Gen4, 
which allows 
transfers of more than 200Gb/sec of data  to and from the SSDs.



VPIC Problem (Courtesy Brad Settlemyer)
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• Problem Statement

– Consider the problem of tracking a spatially correlated energy peak through space, 
i.e. tracking an energy wave. In a particle-in-cell code, such as LANL’s VPIC, the 
energy values are calculated using trillions of small particles (approximately 32 Bytes 
each) that move between processes as the simulation progresses. In order to 
identify all energy peaks at a timestep it is necessary to understand the energy 
distribution of the particles. The approach most commonly used in practice is to post-
process the output data sets and construct energy histograms. The primary 
challenge in constructing an energy histogram is that the histogram bin widths are 
typically impossible to estimate in advance. To determine appropriate bin widths 
during post-processing requires using computational resources similar to the original 
simulation in order to efficiently post-process all of the simulation output. Another 
alternative is to simply sample some small percentage of the particles and estimating 
an empirical distribution based on the sampled particles. This technique is 
problematic because simulations are typically constrained by memory use, and both 
the all-to-all communications and buffering required to sample the energy space are 
expensive to achieve in practice.



Host: Rank 0 Host: Rank 1

BF:
Rank 2 Network BF: 

Rank 3

MPI_Send(particles, …, rank=0)

MPI_Send(particles,…, ra
nk=2)

MPI_COMM_WORLD

Host Communicator

BF Communicator

MPI_Allreduce(bin_data, …, BF Communicator)
particles particles

Integrating Bluefields into VPIC (Jack Snyder – Mellanox/DUKE/LANL)

• BF’s are assigned an MPI Rank like any other host
• Particles are exchanged with MPI when they cross boundaries
• BF is also sent particles, which are then binned
• BF calculates Moments for each particle
• BF reconstructs quantiles of particle distribution from Moments

Moment
Moment2

Moment…

Momentn

Moment
Moment2

Moment…

Momentn



Option #2 (Some potential instructions)
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SNICresult status = snicInit(0);
status = snicDeviceGet(&dev, 0);
status = snicDeviceComputeCapability(&major,&minor,dev);
snicGetDeviceCount(&device_count);
snicSetDevice( device );
snicGetDevice(&device);
snicGetDeviceProperties(&deviceProp,device);
snicDeviceReset();
snicDriverGetVersion ( int* driverVersion )
snicDeviceGetAttribute ( int* pi, snicDEVICE attrib, snicDEVICE dev )
snicDeviceGetName ( char* name, int len, snicDEVICE dev )
snicDeviceTotalMem ( size_t* bytes, snicDEVICE dev )

NVIDIA has MANY great potential examples for this mode.
I copied these from NVIDIA docs.



Option #3 (Some potential examples)
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• http://xillybus.com/tutorials/vivado-hls-c-fpga-howto-2
• Can use #pragma

void snicBUS_wrapper(int *in, int *out) 
{ 
#pragma AP interface ap_fifo port=in 
#pragma AP interface ap_fifo port=out 
#pragma AP interface ap_ctrl_none port=return 

snic_puts("Hello, world\n"); // Handle input data 
}

• Can write directly to device
• fdr = open("/dev/snicBUS_read_32", O_RDONLY); 
• fdw = open("/dev/snicBUS_write_32", O_WRONLY);
• write(fdw, (void *) &tologic, sizeof(tologic)); 
• read(fdr, (void *) &fromlogic, sizeof(fromlogic));

• Mellanox and others have many examples on how to use at this level.

http://xillybus.com/tutorials/vivado-hls-c-fpga-howto-2


Option #4 (Some potential examples)
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• Do we define our own? (Language)
• Do we adopt something like P4 or Micro-C
• UNO

• SDN-controlled NF offload architecture (wisc)
• https://wisr.cs.wisc.edu/papers/p506-le.pdf

• Floem
• a language, compiler, and runtime — for programming NIC-accelerated appli- cations. 
• https://www.usenix.org/system/files/osdi18-phothilimthana.pdf

• What about Python?
• What can we learn from SDN?

• Can we adopt/adapt a larger communities work?
• How do we make it fit best with UCX?
• https://blog.mellanox.com/2018/09/why-you-need-smart-nic-use-cases/
• Fund a summer intern(s) to develop summary paper(s) on:

• Vendors
• Languages
• Functionalities
• Classifications

https://wisr.cs.wisc.edu/papers/p506-le.pdf
https://blog.mellanox.com/2018/09/why-you-need-smart-nic-use-cases/


Potential future UCX Diagram
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OpenSNAPI OpenPhone

Where would OpenSNAPI fit in the UCX “eco-system”?

OpenSNAPI
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