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Unified Communication X (UCX) - A
high performance communication layer library (1/2) o

Unified API Focus on performance Production quality

Applicdatlijns driven, sim.p|E, Fast, scalable, highly optimized low Multi-tier testing, used by top
extendable, HW-agnostic latency high bandwidth messaging Mellanox customers in production
framework

Open source Innovation Multi arch/transports

Collaboration between industry, Concepts and ideas from research in RoCE, InfiniBand, Cray, TCP, shared
laboratories, and academia academia and industry memory, GPUs, x86, ARM, POWER

Co-design of Network APIs
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Unified Communication X (UCX) - ‘M
high performance communication layer library (2/2) ™™

Applications
HPC (MPI, SHMEM, ...) Storage, RPC, Al Web 2.0 (Spark, Hadoop)

UCP — High Level API (Protocols)
Transport selection, multi-rail, fragmentation

HPC API: ‘ ‘ IO API: ‘ ‘ e ———

tag matching, active messages Stream, RPC, remote memory access, atomics client/server, external

UCT — Low Level API (Transports)
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JUCX — java bindings for UCX Melagex

" Transport abstraction - implemented on top of UCP layer
= Can run over different types of transports (Shared memory, Infiniband/RoCE, Cuda,...)

= Ease of use APl wrapper over high level UCP layer

= Supported operations: non blocking send/recv/put/get
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JUCX API example A\
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1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams());

3. Instantiate ucp endpoint:

EndpointParams epp = new UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234")
UcpEndpoint endpoint = worker.newEndpoint(epp);

4. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, LocalBuffer);

5. Progress request until it's completed:

while(!request.isCompleted()) {
worker.progress();
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v
Spark’s Shuffle Basics A
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The Cost of Shuffllng Mellapex

= Shuffling is very expensive in terms of CPU, RAM, disk and network los
= Spark users try to avoid shuffles as much as they can

= Speedy shuffles can relieve developers of such concerns, and simplify
applications
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SparkUCX Shuffle Plugin

https://github.com/openucx/sparkucx



https://github.com/openucx/sparkucx

ShuffleManager Plugin A

" Spark allows for external implementations of ShuffleManagers to be plugged in
" Configurable per-job using: “spark.shuffle.manager”

" Interface allows proprietary implementations of Shuffle Writers and Readers, and essentially defers the
entire Shuffle process to the new component

" SparkUCX utilizes this interface to introduce RDMA in the Shuffle process
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SparkUCX memory layout object model

" Driver global metadata buffer

" Mapper Inde

X file

" Mapper data

Mapperl

A 4

BlockO offset |Blockl offset |[Block2 offset |Block3 offset |Block4 offset

file
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SparkUCX operation flow O

= |nitialization:

Spark driver allocates global metadata buffer per shuffle stage, to hold
addresses and memory keys of data and index files on mappers.

= Mapper phase:

" mmap() and register index and data files

" Publish {address, rkey} to driver metadata buffer (ucp_put).
" Reduce phase:

°* Fetch metadata from driver (ucp_get)

®* For each block:

o  Fetch offset in data file, from index file (ucp_get).
o  Fetch block contents from data file (ucp _get).
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Benchmarking eco-system Mellanox

" Benchmarks: Terasort + Pagerank
" https://github.com/zrlio/crail-spark-terasort
" https://github.com/Intel-bigdata/HiBench

" Terasort:
® 1.2 TBinput, 10K mappers, 15k reducers

" Pagerank:
" Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers

" 15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD

" ConnectX-5: Infiniband: 100G EDR. TCP device: IPolB 100G

" Red Hat Enterprise Linux Server release 7.5 (Maipo) (kernel: 3.10.0-862.el7.x86_64)
“ MLNX_OFED_LINUX-4.6-1.0.1.1.

" Spark-2.4.3, Hadoop-2.9.2, UCX v1.7.0
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https://github.com/zrlio/crail-spark-terasort
https://github.com/Intel-bigdata/HiBench

TCP vs UCX performance (1/3) fiellanox
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TCP vs UCX Terasort scalability (2/3) ‘M
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Execution time, seconds

TCP vs UCX Terasort scalability (3/3) ‘M
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Scalability on number of reducers Scalability on number of reducers
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SparkRDMA vs. SparkUCX

Based on abandoned IBM DiSNi verbs package

Supports IB/ROCE with RC only

Not scalable, CQ and progress thread per connection

Communications progress on dedicated thread which
consumes CPU %

RDMA protocols are implemented in Java

Registering each data block with different key

Showed improved vs. worst TCP numbers

o

Mellanox

Based on UCX high-level APl which has dedicated R&D and
wide community. Production grade.

Supports IB, ROCE with RC/DC/Shared memory, and TCP as
fallback

Scalable: CQ per executor

Communications are initiated from application threads and
progressed asynchronously by hardware

Based on standard UCX APl and protocols hiding complexity
of RDMA

Registering all data as single chunk

Showed improved vs. best TCP numbers
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Future work Mellanox

" Optimizations on multiple benchmarks (TPC-DS, TPC-H, etc.)
= Support shuffle data larger then memory

= GPU memory support

= HDFS optimization with UCX
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