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Unified Communication X (UCX) -
high performance communication layer library (1/2)
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Unified Communication X (UCX) -
high performance communication layer library (2/2)
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JUCX – java bindings for UCX

 Transport abstraction - implemented on top of UCP layer
 Can run over different types of transports (Shared memory, Infiniband/RoCE, Cuda,…)

 Ease of use API wrapper over high level UCP layer

 Supported operations: non blocking send/recv/put/get
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JUCX API example
1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams());

3. Instantiate ucp endpoint:

EndpointParams epp = new UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234")
UcpEndpoint endpoint = worker.newEndpoint(epp);

4. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, localBuffer);

5. Progress request until it's completed:

while(!request.isCompleted()) {
worker.progress();

}
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Spark’s Shuffle Basics
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The Cost of Shuffling

 Shuffling is very expensive in terms of CPU, RAM, disk and network Ios

 Spark users try to avoid shuffles as much as they can

 Speedy shuffles can relieve developers of such concerns, and simplify 
applications
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SparkUCX Shuffle Plugin
https://github.com/openucx/sparkucx

https://github.com/openucx/sparkucx
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ShuffleManager Plugin

 Spark allows for external implementations of ShuffleManagers to be plugged in
 Configurable per-job using: “spark.shuffle.manager”

 Interface allows proprietary implementations of Shuffle Writers and Readers, and essentially defers the 
entire Shuffle process to the new component

 SparkUCX utilizes this interface to introduce RDMA in the Shuffle process

SortShuffleManager UcxShuffleManager
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SparkUCX memory layout object model

 Driver global metadata buffer

 Mapper Index file

 Mapper data file

Block0 Block1 Block2 Block3 Block4

Block0 offset Block1 offset Block2 offset Block3 offset Block4 offset

Mapper0 Medatata:
- Index {address, rkey}
- Data {address, rkey}

Mapper1 
Metadata
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Metadata

Mapper3 
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SparkUCX operation flow

 Initialization: 
Spark driver allocates global metadata buffer per shuffle stage, to hold 
addresses and memory keys of data and index files on mappers.

 Mapper phase: 
 mmap() and register index and data files
 Publish {address, rkey} to driver metadata buffer (ucp_put).

 Reduce phase: 
• Fetch metadata from driver (ucp_get)
• For each block:

o Fetch offset in data file, from index file (ucp_get).
o Fetch block contents from data file (ucp_get).
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Benchmarking eco-system

 Benchmarks: Terasort + Pagerank
 https://github.com/zrlio/crail-spark-terasort
 https://github.com/Intel-bigdata/HiBench

 Terasort:
 1.2 TB input, 10K mappers, 15k reducers

 Pagerank:
 Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers

 15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD
 ConnectX-5: Infiniband: 100G EDR. TCP device: IPoIB 100G
 Red Hat Enterprise Linux Server release 7.5 (Maipo) (kernel: 3.10.0-862.el7.x86_64)
 MLNX_OFED_LINUX-4.6-1.0.1.1.
 Spark-2.4.3, Hadoop-2.9.2, UCX v1.7.0

https://github.com/zrlio/crail-spark-terasort
https://github.com/Intel-bigdata/HiBench
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TCP vs UCX performance (1/3)
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TCP vs UCX Terasort scalability (2/3)

54-92%



© 2019 Mellanox Technologies 1515

TCP vs UCX Terasort scalability (3/3)

25-92%
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SparkRDMA vs. SparkUCX

SparkRDMA SparkUCX

Based on abandoned IBM DiSNi verbs package Based on UCX high-level API which has dedicated R&D and 
wide community. Production grade.

Supports IB/ROCE with RC only Supports IB, ROCE with RC/DC/Shared memory, and TCP as 
fallback

Not scalable, CQ and progress thread per connection Scalable: CQ per executor

Communications progress on dedicated thread which 
consumes CPU %

Communications are initiated from application threads and 
progressed asynchronously by hardware

RDMA protocols are implemented in Java Based on standard UCX API and protocols hiding complexity 
of RDMA

Registering each data block with different key Registering all data as single chunk

Showed improved vs. worst TCP numbers Showed improved vs. best TCP numbers



© 2019 Mellanox Technologies 1717

Future work

 Optimizations on multiple benchmarks (TPC-DS, TPC-H, etc.)
 Support shuffle data larger then memory
 GPU memory support
 HDFS optimization with UCX
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