Mellanox

TECHNOLOGIES

Spark with UCX

Dec 2019

Accelerating

\

1

© 2019 Mellanox Technologies

Unified Communication X (UCX) - A
high performance communication layer library (1/2) o

Unified API Focus on performance Production quality

Applicdatlijns driven, sim.p|E, Fast, scalable, highly optimized low Multi-tier testing, used by top
extendable, HW-agnostic latency high bandwidth messaging Mellanox customers in production
framework

Open source Innovation Multi arch/transports

Collaboration between industry, Concepts and ideas from research in RoCE, InfiniBand, Cray, TCP, shared
laboratories, and academia academia and industry memory, GPUs, x86, ARM, POWER

Co-design of Network APIs

© 2019 Mellanox Technologies 2

Unified Communication X (UCX) - ‘M
high performance communication layer library (2/2) ™™

Applications
HPC (MPI, SHMEM, ...) Storage, RPC, Al Web 2.0 (Spark, Hadoop)

UCP — High Level API (Protocols)
Transport selection, multi-rail, fragmentation

HPC API: ‘ ‘ IO API: ‘ ‘ e ———

tag matching, active messages Stream, RPC, remote memory access, atomics client/server, external

UCT — Low Level API (Transports)

) (GPU/Accelerators | [Others

s

‘ RC H DCT J ‘ ubD H iWarp J ‘ CUDA J ‘ AMDIROCMJ

. "\

[Shared |

‘ TCP H OmniPath ‘ Cray ‘
| I'. \ memory] i Y Y) .'I

Hardware

© 2019 Mellanox Technologies 3

A

JUCX — java bindings for UCX Melagex

" Transport abstraction - implemented on top of UCP layer
= Can run over different types of transports (Shared memory, Infiniband/RoCE, Cuda,...)

= Ease of use APl wrapper over high level UCP layer

= Supported operations: non blocking send/recv/put/get

© 2019 Mellanox Technologies 4 ©

JUCX API example A\

EEEEEEEEEEEE

1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams());

3. Instantiate ucp endpoint:

EndpointParams epp = new UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234")
UcpEndpoint endpoint = worker.newEndpoint(epp);

4. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, LocalBuffer);

5. Progress request until it's completed:

while(!request.isCompleted()) {
worker.progress();

© 2019 Mellanox Technologies 5

P\

v
Spark’s Shuffle Basics A

TECHNOLOGIES

Input Map output

IR - -

o v | — [—

S me =

o |~ 1

ver | 1

Reduce task | Fetch blocks — —_—

8 @ Reducetask |—> Fetch blocks _

5 J—(| —
8 ' Reduce task |—*| Fetch blocks

o @ Feducetask | Fetchblocks | — [—

© 2019 Mellanox Technologies 6

A

The Cost of Shuffllng Mellapex

= Shuffling is very expensive in terms of CPU, RAM, disk and network los
= Spark users try to avoid shuffles as much as they can

= Speedy shuffles can relieve developers of such concerns, and simplify
applications

© 2019 Mellanox Technologies 7 §

SparkUCX Shuffle Plugin

https://github.com/openucx/sparkucx

https://github.com/openucx/sparkucx

ShuffleManager Plugin A

" Spark allows for external implementations of ShuffleManagers to be plugged in
" Configurable per-job using: “spark.shuffle.manager”

" Interface allows proprietary implementations of Shuffle Writers and Readers, and essentially defers the
entire Shuffle process to the new component

" SparkUCX utilizes this interface to introduce RDMA in the Shuffle process

© 2019 Mellanox Technologies 9 ‘

SparkUCX memory layout object model

" Driver global metadata buffer

" Mapper Inde

X file

" Mapper data

Mapperl

A 4

BlockO offset |Blockl offset |[Block2 offset |Block3 offset |Block4 offset

file

Y\

Mellanox

© 2019 Mellanox Technologies 10 ‘

SparkUCX operation flow O

= |nitialization:

Spark driver allocates global metadata buffer per shuffle stage, to hold
addresses and memory keys of data and index files on mappers.

= Mapper phase:

" mmap() and register index and data files

" Publish {address, rkey} to driver metadata buffer (ucp_put).
" Reduce phase:

°* Fetch metadata from driver (ucp_get)

®* For each block:

o Fetch offset in data file, from index file (ucp_get).
o Fetch block contents from data file (ucp _get).

© 2019 Mellanox Technologies 11

Benchmarking eco-system Mellanox

" Benchmarks: Terasort + Pagerank
" https://github.com/zrlio/crail-spark-terasort
" https://github.com/Intel-bigdata/HiBench

" Terasort:
® 1.2 TBinput, 10K mappers, 15k reducers

" Pagerank:
" Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers

" 15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD

" ConnectX-5: Infiniband: 100G EDR. TCP device: IPolB 100G

" Red Hat Enterprise Linux Server release 7.5 (Maipo) (kernel: 3.10.0-862.el7.x86_64)
“ MLNX_OFED_LINUX-4.6-1.0.1.1.

" Spark-2.4.3, Hadoop-2.9.2, UCX v1.7.0

© 2019 Mellanox Technologies 12 \"\'\m
9

https://github.com/zrlio/crail-spark-terasort
https://github.com/Intel-bigdata/HiBench

TCP vs UCX performance (1/3) fiellanox

Terasort Pagerank
2800
700 27%
TCF
600
-
0% E 500
e £
LICX & 300
0
200
1 20 40 &0 g0 100 120 140 160 180 100
Time, seconds
0
m Totaltime Reducer time UCX TCP

© 2019 Mellanox Technologies 13

TCP vs UCX Terasort scalability (2/3) ‘M

Mellanox

Execution time, seconds

Scalability on number of executors Scalability on number of executors
350 120
300 8 100
250 3
o 80
200 & . o)
S e 54-92%
150 =
100 e -
— T —
50 E 20
0 1]
15 20 25 30 15 20 -z 30
Number of nodes Mumber of nodes
s, | CX OGN e s—TCP (oLl time s—l e e time LICK s uce time TCP o | Y s TCP

© 2019 Mellanox Technologies 14 ‘

Execution time, seconds

TCP vs UCX Terasort scalability (3/3) ‘M

Mellanox

TECHNOLOGIES

Scalability on number of reducers Scalability on number of reducers
500 250
a
= X :
300 “ 15D
200 \ E B
w = — : $75-92%
-
Gl T e 15 0hi0 200 2500 ETLELL 350 0
MNumber of rducers S0y 100 15000 L 25000 SO000 35000
Mumber of reducers
o | JCX total time s TCP total time
e Pl e UCE M2 UK e R uice time TCP e |JCY e TCP

© 2019 Mellanox Technologies

SparkRDMA vs. SparkUCX

Based on abandoned IBM DiSNi verbs package

Supports IB/ROCE with RC only

Not scalable, CQ and progress thread per connection

Communications progress on dedicated thread which
consumes CPU %

RDMA protocols are implemented in Java

Registering each data block with different key

Showed improved vs. worst TCP numbers

o

Mellanox

Based on UCX high-level APl which has dedicated R&D and
wide community. Production grade.

Supports IB, ROCE with RC/DC/Shared memory, and TCP as
fallback

Scalable: CQ per executor

Communications are initiated from application threads and
progressed asynchronously by hardware

Based on standard UCX APl and protocols hiding complexity
of RDMA

Registering all data as single chunk

Showed improved vs. best TCP numbers

© 2019 Mellanox Technologies 16

Future work Mellanox

" Optimizations on multiple benchmarks (TPC-DS, TPC-H, etc.)
= Support shuffle data larger then memory

= GPU memory support

= HDFS optimization with UCX

© 2019 Mellanox Technologies 17

\

Mellanox

TECHNOLOGIES

AN " ,../.‘\....“'.x(?4./, —> .

Thank You

© 2019 Mellanox Technologies 18 ‘

