
© 2019 Mellanox Technologies 11

Dec 2019

Accelerating 
Spark with UCX



© 2019 Mellanox Technologies 22

Unified Communication X (UCX) -
high performance communication layer library (1/2)



© 2019 Mellanox Technologies 33

Unified Communication X (UCX) -
high performance communication layer library (2/2)



© 2019 Mellanox Technologies 44

JUCX – java bindings for UCX

 Transport abstraction - implemented on top of UCP layer
 Can run over different types of transports (Shared memory, Infiniband/RoCE, Cuda,…)

 Ease of use API wrapper over high level UCP layer

 Supported operations: non blocking send/recv/put/get



© 2019 Mellanox Technologies 55

JUCX API example
1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams());

3. Instantiate ucp endpoint:

EndpointParams epp = new UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234")
UcpEndpoint endpoint = worker.newEndpoint(epp);

4. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, localBuffer);

5. Progress request until it's completed:

while(!request.isCompleted()) {
worker.progress();

}



© 2019 Mellanox Technologies 66

Spark’s Shuffle Basics

Map

Reduce task

M
ap

R
ed

u
ce

Map

Map

Map

Map

Input Map output

File

File

File

File

File

Spark 
Master

Reduce task

Reduce task

Reduce task

Reduce task

Fetch blocks

Fetch blocks

Fetch blocks

Fetch blocks

Fetch blocks



© 2019 Mellanox Technologies 77

The Cost of Shuffling

 Shuffling is very expensive in terms of CPU, RAM, disk and network Ios

 Spark users try to avoid shuffles as much as they can

 Speedy shuffles can relieve developers of such concerns, and simplify 
applications



© 2019 Mellanox Technologies 88

SparkUCX Shuffle Plugin
https://github.com/openucx/sparkucx

https://github.com/openucx/sparkucx


© 2019 Mellanox Technologies 99

ShuffleManager Plugin

 Spark allows for external implementations of ShuffleManagers to be plugged in
 Configurable per-job using: “spark.shuffle.manager”

 Interface allows proprietary implementations of Shuffle Writers and Readers, and essentially defers the 
entire Shuffle process to the new component

 SparkUCX utilizes this interface to introduce RDMA in the Shuffle process

SortShuffleManager UcxShuffleManager



© 2019 Mellanox Technologies 1010

SparkUCX memory layout object model

 Driver global metadata buffer

 Mapper Index file

 Mapper data file

Block0 Block1 Block2 Block3 Block4

Block0 offset Block1 offset Block2 offset Block3 offset Block4 offset

Mapper0 Medatata:
- Index {address, rkey}
- Data {address, rkey}

Mapper1 
Metadata

Mapper2 
Metadata

Mapper3 
Metadata

Mapper4 
Metadata

Mapper5 
Metadata



© 2019 Mellanox Technologies 1111

SparkUCX operation flow

 Initialization: 
Spark driver allocates global metadata buffer per shuffle stage, to hold 
addresses and memory keys of data and index files on mappers.

 Mapper phase: 
 mmap() and register index and data files
 Publish {address, rkey} to driver metadata buffer (ucp_put).

 Reduce phase: 
• Fetch metadata from driver (ucp_get)
• For each block:

o Fetch offset in data file, from index file (ucp_get).
o Fetch block contents from data file (ucp_get).



© 2019 Mellanox Technologies 1212

Benchmarking eco-system

 Benchmarks: Terasort + Pagerank
 https://github.com/zrlio/crail-spark-terasort
 https://github.com/Intel-bigdata/HiBench

 Terasort:
 1.2 TB input, 10K mappers, 15k reducers

 Pagerank:
 Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers

 15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD
 ConnectX-5: Infiniband: 100G EDR. TCP device: IPoIB 100G
 Red Hat Enterprise Linux Server release 7.5 (Maipo) (kernel: 3.10.0-862.el7.x86_64)
 MLNX_OFED_LINUX-4.6-1.0.1.1.
 Spark-2.4.3, Hadoop-2.9.2, UCX v1.7.0

https://github.com/zrlio/crail-spark-terasort
https://github.com/Intel-bigdata/HiBench


© 2019 Mellanox Technologies 1313

TCP vs UCX performance (1/3)

27%

30%

60%



© 2019 Mellanox Technologies 1414

TCP vs UCX Terasort scalability (2/3)

54-92%



© 2019 Mellanox Technologies 1515

TCP vs UCX Terasort scalability (3/3)

25-92%



© 2019 Mellanox Technologies 1616

SparkRDMA vs. SparkUCX

SparkRDMA SparkUCX

Based on abandoned IBM DiSNi verbs package Based on UCX high-level API which has dedicated R&D and 
wide community. Production grade.

Supports IB/ROCE with RC only Supports IB, ROCE with RC/DC/Shared memory, and TCP as 
fallback

Not scalable, CQ and progress thread per connection Scalable: CQ per executor

Communications progress on dedicated thread which 
consumes CPU %

Communications are initiated from application threads and 
progressed asynchronously by hardware

RDMA protocols are implemented in Java Based on standard UCX API and protocols hiding complexity 
of RDMA

Registering each data block with different key Registering all data as single chunk

Showed improved vs. worst TCP numbers Showed improved vs. best TCP numbers



© 2019 Mellanox Technologies 1717

Future work

 Optimizations on multiple benchmarks (TPC-DS, TPC-H, etc.)
 Support shuffle data larger then memory
 GPU memory support
 HDFS optimization with UCX



© 2019 Mellanox Technologies 18

Thank You


