
© 2019 Mellanox Technologies 11

December 2019

UCC: Unified Collectives
Communication API
Manjunath Gorentla Venkata
UCF F2F

© 2019 Mellanox Technologies 22

How to read this presentation ?

▪ Presentation introduces the abstraction, concepts, and semantics
▪ Interfaces, structures, and library constant details are in the API document

▪ Focus on the big picture for this presentation
▪ Details can be debated

▪ Do not focus on naming, yet
▪ We can change the names later. For example, a team can be named as group or communicator

© 2019 Mellanox Technologies 33

UCC: Unified Collective Communication Library

▪ Blocking and Nonblocking collective
operations

▪ Hierarchical collectives are a first-class
citizen
▪ Well-established design for achieving

performance and scalability

▪ Hardware collectives are a first-class citizen
▪ Well-established model and have demonstrated

to achieve performance and scalability

▪ Flexible resource allocation model
▪ Support for lazy, local and global resource

allocation decisions

▪ Support for relaxed ordering model
▪ For AI/ML application domains

▪ Flexible synchronous model
▪ Highly synchronized collective operations (MPI

model)
▪ Less synchronized collective operations

(OpenSHMEM and PGAS model)

▪ Repetitive collective operations (init once
and invoke multiple times)
▪ AI/ML collective applications, persistent

collectives

▪ Point-to-point operations in the context of
group

▪ Global memory management
▪ OpenSHMEM PGAS, MPI, and CORAL2 (RFP)

Proposal : Collective communication operations API that is flexible, complete, and
feature-rich for current and emerging programming models and runtimes.

High-level Features

© 2019 Mellanox Technologies 44

Design around simple set of key abstractions for flexibility and efficiency

Key Abstractions : Overview

▪ Communication (Team) Library: An abstract object representing the library

▪ Communication Context: Encapsulates local resources and topology for group operations.

▪ Team: Encapsulates global resources and team members for group operations.

▪ Endpoints: Encapsulates the members of the team

▪ Collective Operation: Represents the collective operation

▪ Task and task list: Represents groups of collectives

© 2019 Mellanox Technologies 55

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

© 2019 Mellanox Technologies 66

Library : Initialize and finalize

Semantics:
▪ Library initialization and finalization allocate and release resources
▪ All library resources are created and finalized during/after the initialization and finalization calls

respectively
▪ No operations on the library are valid after the finalize operation
▪ No overlapping of Init and finalize call (i.e., Init – Init – Finalize – Finalize on a single thread is invalid behavior)

▪ The library can be coupled with UCX (UCP context) during initialization
▪ The library can be customized for a specific programming model

ucc_team_lib_init(ucc_lib_team_params_t ucc_params, ucc_team_lib_t *team_lib);

ucc_team_lib_finalize(ucc_team_lib_t team_lib);

© 2019 Mellanox Technologies 77

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Groups of Collectives

© 2019 Mellanox Technologies 88

Communication Context (1)

Semantics:
▪ Context is created by ucc _create_team_context(), a local operation
▪ Contexts represents a local resource - threads, injection queue, and/or network parallelism

▪ Example: software injection queues (UCP Worker, List of UCP Endpoints), Switch local resources, Hardware injection
resources

▪ Context can be coupled with threads, processes or tasks
▪ A single MPI process can have multiple contexts
▪ A single thread (pthread or OMP thread) can be coupled with multiple contexts

An object to encapsulate local resource and express network parallelism

ucc_create_team_context(ucc_team_lib_t comm_lib_context, ucc_team_context_config_t
ctx_config, ucc_team_context_t *comm_context);

ucx_destroy_team_context(ucc_team_context_t team_context);

© 2019 Mellanox Technologies 99

Communication Context (2)

Semantics:
▪ Context can be bound to a specific core, socket, or an accelerator

▪ Provides an ability to express affinity

▪ Context can participate in multiple group operations
▪ Private context can participate in only one group operation (team)
▪ Shared context can participate in multiple group operations

▪ Multiple contexts per team (from same thread) can be supported
▪ Software and hardware collectives

An object to encapsulate local resource and express network parallelism

ucc_create_team_context(ucc_team_lib_t comm_lib_context, ucc_team_context_config_t
ctx_config, ucc_team_context_t *comm_context);

ucx_destroy_team_context(ucc_team_context_t team_context);

© 2019 Mellanox Technologies 1010

The usage model, operations supported, thread model, and
invocation/completion can be customized.

Customizing Context

struct ucc_team_context_config {
ucc_network_ops_t ops;
ucc_threading_support_t thread_support;
ucc_team_completion_type_t completion_type;
ucc_team_usage_type_t usage;

}

© 2019 Mellanox Technologies 1111

Customizing Context: Usage Model

Options:
▪ UCC as Network Library

▪ User implements the collective algorithms and UCC implements the data transfer channels in the context of team

▪ UCC as Collective library
▪ UCC implements the collective algorithms and data transfer channels

Use cases:
▪ Require collective algorithms and implementation for collective communication

▪ Programming models using UCX for point-to-point communication

▪ Require a thin abstraction over hardware collective primitives
▪ Collective libraries that have explored and implemented collective algorithms

▪ Require a thin abstraction over point-to-point operations and need group abstractions
▪ OpenSHMEM contexts
▪ MPI Windows

© 2019 Mellanox Technologies 1212

Helps with transport selection, resource allocation, and management

Customizing Context: Operations Supported

Options:
▪ Only Point-to-point operations
▪ Enables creation of resources for only RMA and Point-to-point operations

▪ Only Collective operations
▪ Enables creation of resources for only collective operations

▪ No communication operation
▪ Enables creation of group but no resources are allocated for collectives or RMA/P2P operations
▪ Use case: Required for symmetric memory APIs, Memory allocation routines in OpenSHMEM

▪ Both Point-to-point and collective communication operations are supported

© 2019 Mellanox Technologies 1313

Provides well-defined interaction between the threads and local resources

Customizing Context : Threads and Contexts

▪ Provide options for performance, flexibility and resource usage
▪ Sharing of resources between Teams

Options:
▪ SINGLE

▪ The context is accessed by a single thread
▪ The context participates in a single Team

▪ So resources are exclusive to one Team

▪ The libraries can implement it as a lock-free implementation

▪ SHARED
▪ The context is accessed by multiple threads
▪ The context can participate in multiple teams

▪ Resources are shared by multiple teams

▪ The library is required to protect critical sections

© 2019 Mellanox Technologies 1414

Customizing Context: Invocation and Completion

Options:
▪ Blocking: All operations on the context are blocking
▪ Non-blocking: All operations on the context are non-blocking operations
▪ Split-phase: One outstanding operation at a time, however, completion can be delayed
▪ Default: Both blocking and non-blocking operations can be posted

Use cases:
▪ OpenSHMEM only supports blocking operations.
▪ Support for split-phase barriers
▪ Support for persistent collective semantics

© 2019 Mellanox Technologies 1515

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Groups of Collectives

© 2019 Mellanox Technologies 1616

Who manages the participation in the group?

Team: Membership

User Managed
▪ The user manages who participates in the team

▪ The user provides an OOB collective operation to exchange context among the members
▪ The members join the collective operation
▪ The scope of the team is defined by the OOB collectives

▪ For example, if the OOB is defined over shared memory, the team is created over shared memory.
▪ “UCC_TEAM_WORLD” is created by using PMIx collectives as OOB collectives

Library managed:
▪ The library (UCC) manages the membership

▪ UCC performs and implement a collective operation to determine the participation

© 2019 Mellanox Technologies 1717

Team: Operations for creating teams

▪ Created by processes, threads or tasks by calling
ucc_team_create_post()
▪ A collective operation but no explicit synchronization

among the processes or threads

▪ Non-blocking operation and only one active call
at any given instance.

▪ Each process or thread passes local resource
object (context)
▪ Achieve global agreement during the create operation

▪ Passing NULL as OOB will result in creating a
“world” team

▪ Create global resources for group communication
buffers
▪ Synchronization buffers for one-sided collectives
▪ Temporary buffers for reduction operations
▪ Scratch buffers for non-blocking operations
▪ Create connections if required
▪ Filter the available operations and algorithms

ucc_team_create_post(
ucc_team_context_t team_context, ucc_team_config_t comm_config, oob_collectives_t

oob_collectives, ucc_team_ep_t *my_ep, ucc_team_t *new_team);

ucc_team_create_wait();

Semantics:

© 2019 Mellanox Technologies 1818

Team : Customizing team

Semantics:
▪ Ordering : All team members must invoke collective

in the same order?
▪ Yes for MPI and No for TensorFlow and Persistent

collectives

▪ Outstanding collectives
▪ Can help with resource management

▪ Blocking/Non-blocking
▪ A team can be customized to be either blocking or non-

blocking

▪ Should Endpoints in a contiguous range ?
▪ Datatype

▪ Can be customized for contiguous, strided, or non-
contiguous datatypes

▪ Synchronization Model
▪ On_Entry, On_Exit, or On_Both – this helps with global

resource allocation

struct ucc_team_config_t {
ucc_post_ordering ordering;
uint64_t num_outstanding_collectives;

ucc_team_completion_type_t comple
tion_type;
ucc_collective_sync_type_t sync;
ucc_ep_range_contig ep_range;
ucc_dt_type_t datatype;
ucc_mem_params_t mem_params;
}

© 2019 Mellanox Technologies 1919

Customizing Team: Synchronizing Model

▪ NO_SYNC_ON_Entry: No synchronization on entry
▪ On entry each process can start the collective irrespective of other processes entered the collective or not
▪ Data readiness is ensured by the programming model user (not programming model itself)
▪ Use case : OpenSHMEM / UPC

▪ NO_SYNC_ON _Exit: No synchronization on exit
▪ On exit each process can exit the collective irrespective of other processes completed or not

▪ Provides guarantees about local completeness, not global state

▪ Use case/ Motivation: Broadcast, OpenSHMEM / UPC

▪ NO_SYNC: No synchronization on entry or exit
▪ Data readiness is ensured by the User
▪ Global completion guarantees are to be learned by the user
▪ Use case : OpenSHMEM/UPC

▪ Default: Synchronization on both entry and exit to the collective
▪ Data readiness is ensured by the programming model and provides global state on completion

© 2019 Mellanox Technologies 2020

Team : Query Operations

▪ All attributes of the team are available via ucc_team_attrib_t
▪ Size, ordering, sync type, completion semantics, datatype, endpoints, and memory handles

▪ Interfaces for some common attributes
▪ Size and Endpoints

ucc_get_team_attribs(ucc_team_t ucc_team, ucc_team_attrib_t *team_atrib)
ucc_get_team_size(ucc_team_t ucc_team);
ucc_get_team_my_ep(ucc_team_t ucc_team, ucc_team_ep_t *ep);
ucc_get_team_all_eps(ucc_team_t ucc_team, ucc_team_ep_t *ep, uint64_t num_eps);

© 2019 Mellanox Technologies 2121

Team : Splitting teams

Semantics:
▪ Split

▪ Collective operation over the parent team
▪ Collective operations over the child team or can be a local operation (interface in the later slides)

▪ Provides flexible way to create a team
▪ Supports regular as well as irregular team creation

▪ Inherits configuration from the parent team
▪ Thread model: One active split operation per process

Supporting split operations in lower libraries will enable resource sharing
between parent and child teams

ucc_team_create_from_parent(ucc_team_ep my_ep, int color, ucc_team_t parent_team,
ucc_team_t *new_ucc_team);

© 2019 Mellanox Technologies 2222

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Groups of Collectives

© 2019 Mellanox Technologies 2323

Endpoint

Use case:
▪ Team creation only with a collective operation on the newly created team
▪ Light-weight team creation by passing the list of endpoints

▪ Enables lazy resource allocation

▪ Support spawn semantics .i.e., supports adding an endpoint to the team

An integer that represents the network address and/or team member

ucc_create_team_from_ep_list(ucc_team_t parent_ucc_team, ucc_team_ep *ep, uint64_t
num_eps, ucc_team_t *new_team);

ucc_create_team_from_ep_stride(ucc_team_t parent_ucc_team, uint64_t start_ep, uint64_t
stride, uint64_t num_eps, ucc_team_t *new_team);

ucc_team_add_endpoint(ucc_team_t parent_ucc_team, ucc_team_context_t *team_context,
ucc_team_ep ep, ucc_team_t *new_team);

© 2019 Mellanox Technologies 2424

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operations

6. Task and task list

© 2019 Mellanox Technologies 2525

Collective Operations : Building blocks (1)

ucc_collective_init(ucc_coll_op_args coll_args, ucc_team_t team, ucc_coll_op_h *coll_handle);
ucc_collective_init_and_post(ucc_coll_op_args coll_args, ucc_team_t team, ucc_coll_req
*request, ucc_coll_op_h *coll_handle);

int ucx_collective_post(ucc_coll_op_h coll_handle, ucc_coll_req *request)
int ucx_collective_test(ucc_coll_req request);
int ucx_collective_wait(ucc_coll_req request);
int ucx_collective_finalize(ucc_coll_req request);

© 2019 Mellanox Technologies 2626

Collective Operations : Building blocks (2)

Semantics:
▪ Collective operations : ucc_collective_init(…) and ucc_collective_init_and_post(…)

▪ Local operations: ucc_collective_post, test, wait, finalize

▪ Initialize with ucc_collective_init(…)
▪ Initializes the resources required for a particular collective operation, but does not post the operation

▪ Completion
▪ The test routine provides the status, and wait routine can be used to complete the operation

▪ Finalize
▪ Releases the resources for the collective operation represented by the request
▪ The post, test, and wait operations are invalid after finalize

© 2019 Mellanox Technologies 2727

Collective Operations : How to build various
collectives ?

▪ Nonblocking and blocking collectives:
▪ Can be implemented with Init_and_post and wait+finalize

▪ Persistent Collectives:
▪ Can be implemented using the building blocks - init, post, test, wait, finalize

▪ Split-Phase
▪ Can be implemented with Init_and_post and wait+finalize

ucc_collective_init(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_op_h *coll_handle);
ucc_collective_init_and_post(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_req *request,
ucc_coll_op_h *coll_handle);

int ucx_collective_post(ucc_coll_op_h *coll_handle, ucc_coll_req *request)
int ucx_collective_test(ucc_coll_req request);
int ucx_collective_wait(ucc_coll_req request);
int ucx_collective_finalize(ucc_coll_req request);
int ucx_collective_req_status(ucc_coll_req request);

© 2019 Mellanox Technologies 2828

Customizing Collective Operation (1)

▪ Collective type, buffer information, and
reduction info
▪ Customize the operation

▪ Synchronization type
▪ Same sync_type as context_config / comm_config.
▪ Valid to use the default (all synchronization) even

when context and config are configured as on_entry,
on_exit, or on_both but not vice versa

▪ Collective Tag
▪ For unordered collectives

▪ Root endpoint for root-based operations

typedef struct ucc_collective_op_arguments
{

ucc_collective_type coll_type;
ucc_coll_buffer_info_t buffer_info;
ucc_collective_sync_type_t sync_type;
ucc_reduction_op reduction_info;
ucc_error_type_t error_type;
ucc_coll_tag_t coll_id;
ucc_team_endpoint_t root;

} ucc_coll_op_args;

© 2019 Mellanox Technologies 2929

Customizing Collective Operation (2)
Operation and Reduction Types

enum ucc_collective_type {
Barrier,
Alltoall,
Alltoallv,
Broadcast,
Gather,
Allgather,
Reduce,
Allreduce,
Scatter,
FAN_IN,
FAN_OUT

}

enum ucc_reduction_op {
OP_MAX,
OP_MIN,
OP_SUM,
OP_PROD,
OP_AND,
OP_OR,
OP_XOR,
OP_MAXLOC,
OP_MINLOC

}

© 2019 Mellanox Technologies 3030

Customizing Collective Operation (3)

▪ src_buffer, src_len, dest_buffer, and
dest_len standard semantics

▪ Flags
▪ Persistent
▪ Symmetric
▪ In-buffer

Buffer Information

typedef struct ucc_coll_buffer_info {
void *src_buffer;
size_t src_len;
void *dest_buffer;
size_t dest_len,
int64 flags, /* in-buffer */

} ucc_coll_buffer_info_t

© 2019 Mellanox Technologies 3131

Customizing Collective Operation (3)

▪ Local:
▪ There is no agreement on the errors reported to the

members
▪ If agreement is needed, it is the user responsibility to

achieve it

▪ Global:
▪ All members return the same error

Error Types

enum ucc_error_type {
LOCAL=0,
GLOBAL=1,

}

© 2019 Mellanox Technologies 3232

This is a philosophical question as it varies with the programming environment.
So, some guidelines

Customize Context or Team or Collective Operation?

▪ Make a local decision, when you can.
▪ This reduces the number of global decisions, hence fewer collectives during initialization
▪ Can change the decision with less cost. i.e., no collective required

▪ Provide mechanism to modify local decision during the global agreement process

▪ Provide mechanism to modify the local decision or global decision during the invocation time

© 2019 Mellanox Technologies 3333

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operations

6. Task and task list

© 2019 Mellanox Technologies 3434

Collective Groups

Use Case:
▪ Collective groups enable the implementation of hierarchical collectives

▪ It is well established that by tailoring the algorithm and customizing the implementation to various communication
mechanisms in the system can achieve higher performance and scalability

How to express groups of collectives?
▪ Triggered Operations

▪ ○ Pros: Hardware Support
▪ ○ Cons: Expressing

▪ Collective Schedules as DAGs
▪ ○ Pros: Highly Expressible (parallelism, dependencies)
▪ ○ Cons: Leveraging hardware trigger mechanism is tricky

▪ Chained/List Collective Operations
▪ ○ Pros: Easy to program and implement
▪ ○ Cons: Expressing parallelism can be a bit awkward

Collective groups are a group of ordered or un-ordered collective operations

© 2019 Mellanox Technologies 3535

Collective Groups: Task and Task List

▪ Task: Represents a collective operation and its corresponding team

▪ Task List: Represents a collective operation group executed either in order or unordered

Collective groups are a group of ordered or un-ordered collective operations

© 2019 Mellanox Technologies 3636

Collective Groups

Semantics:
▪ All task operations are local
▪ ucc_create_coll_task() creates a task from collective arguments and team
▪ ucc_create_task_list() creates either an ordered or unordered list of tasks
▪ ucc_schedule_task_list() schedules the tasks to be executed either parallel(unordered) or serial(if

ordered)
▪ All members of the team in the task are expected to execute the same collective operation; otherwise, the operation is

undefined.
▪ All task executions are non-blocking and asynchronous

▪ ucc_complete_tasks() completes the execution of tasks in the task_list

Operations to create and execute tasks

ucc_create_coll_task(ucc_coll_op_args_t args, ucc_team_t team, ucc_coll_task_t *task);
ucc_create_task_list(int num_tasks, bool ordered, ucc_coll_task_t tasks[], ucc_coll_task_list
*task_list);
ucc_schedule_task_list(int priority, ucc_coll_task_t task_list, ucc_task_execution_t *active_list);
ucc_complete_tasks(ucc_execution_t active_graph);

© 2019 Mellanox Technologies 3737

Key Abstractions

1. Communication (Team) Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operations

6. Task and task list

© 2019 Mellanox Technologies 3838

Global memory management

Semantics:
▪ Manages memory on each of member of the team
▪ The constraints argument control the semantics

▪ Example – symmetric, alignment

▪ The hints provide information about usage (think about mbind)
▪ Memory policy – local, shared,
▪ Usage - atomics, counters, small message, large message, MPI windows

Use cases:
▪ OpenSHMEM heaps, MPI Windows, PGAS models, and requirement for some RFPs (for example CORAL2)
▪ Internal for collectives – sync buffers, temporary work buffers

ucc_global_mem_alloc(ucc_team_t team, size_t size, ucc_mem_constraints constraints,
ucc_mem_hints hints, ucc_global_mem_t *mem_handle);

ucc_global_mem_free(ucc_global_mem_t mem_handle, ucc_team_t team)

ucc_global_mem_get_attrib(ucc_global_mem_t mem, ucc_global_mem_attrib *attributes);

© 2019 Mellanox Technologies 3939

A Collective Communication API in UCF should
support

▪ A wider variety of programming models
▪ MPI is important for HPC
▪ Other programming models are important and will grow in importance

▪ Hardware collectives should be a first-class citizen
▪ Mellanox and other vendors already support hardware collectives

▪ Hierarchies should be a first-class citizen
▪ It is well-established that hierarchical collectives achieve higher performance and scalability
▪ UCC API should support abstractions to build hierarchies

▪ Enable flexible resource allocation
▪ Lazy resource allocation
▪ Local and global decisions

▪ Iterative collectives should be supported
▪ Build once and invoke multiple times.

▪ Support for various synchronization models
▪ Both strict and relaxed synchronization models should be supported

▪ Support for P2P operations and global memory allocation operations

© 2019 Mellanox Technologies 40

Thank You

