HHNOLOGIES

Mellanox

TE

UCC

Communication API

Manjunath Gorentla Venkata

UCF F2F

December 2019

\

1

© 2019 Mellanox Technologies

How to read this presentation ? M%hellg&@zz

" Presentation introduces the abstraction, concepts, and semantics
" Interfaces, structures, and library constant details are in the APl document

" Focus on the big picture for this presentation
® Details can be debated

® Do not focus on naming, yet
" We can change the names later. For example, a team can be named as group or communicator

© 2019 Mellanox Technologies 2

PN

UCC: Unified Collective Communication Library

AN

Mellanox
TECHHOLOGIES

Proposal : Collective communication operations API that is flexible, complete, and
feature-rich for current and emerging programming models and runtimes.

High-level Features

" Blocking and Nonblocking collective
operations

" Hierarchical collectives are a first-class
citizen
" Well-established design for achieving
performance and scalability

" Hardware collectives are a first-class citizen

" Well-established model and have demonstrated
to achieve performance and scalability

" Flexible resource allocation model

" Support for lazy, local and global resource
allocation decisions

" Support for relaxed ordering model
" For Al/ML application domains

" Flexible synchronous model

" Highly synchronized collective operations (MPI
model)

" Less synchronized collective operations
(OpenSHMEM and PGAS model)
" Repetitive collective operations (init once
and invoke multiple times)
" Al/ML collective applications, persistent
collectives
" Point-to-point operations in the context of
group
" Global memory management
" OpenSHMEM PGAS, MPI, and CORAL2 (RFP)

© 2019 Mellanox Technologies 3

PN

Key Abstractions : Overview ﬁh@g&ﬂ

Design around simple set of key abstractions for flexibility and efficiency

" Communication (Team) Library: An abstract object representing the library

" Communication Context: Encapsulates local resources and topology for group operations.
" Team: Encapsulates global resources and team members for group operations.

" Endpoints: Encapsulates the members of the team

" Collective Operation: Represents the collective operation

" Task and task list: Represents groups of collectives

© 2019 Mellanox Technologies 4

P N

v
Key Abstractions ﬁiﬂ}*

Communication (Team) Library

Communication Context

Teams

Endpoints

Collective Operation

Task and task list

© 2019 Mellanox Technologies 5

PN

v
Library : Initialize and finalize 0

ucc_team_lib_init(ucc_lib_team_params_t ucc_params, ucc_team_lib_t *team_lib);

ucc_team_lib_finalize(ucc_team_lib_t team_lib);

Semantics:
Library initialization and finalization allocate and release resources

All library resources are created and finalized during/after the initialization and finalization calls
respectively

No operations on the library are valid after the finalize operation

No overlapping of Init and finalize call (i.e., Init — Init — Finalize — Finalize on a single thread is invalid behavior)

The library can be coupled with UCX (UCP context) during initialization
The library can be customized for a specific programming model

© 2019 Mellanox Technologies 6

PN

v
Key Abstractions ﬁiﬂ}*

Communication (Team) Library

Communication Context

Teams

Endpoints

Collective Operation

Groups of Collectives

© 2019 Mellanox Technologies 7

P N

P s ‘AMI&
Communication Context (1) Millanox

An object to encapsulate local resource and express network parallelism

ucc_create_team_context(ucc_team_lib_t comm_lib_context, ucc_team_context_config t
ctx_config, ucc_team_context_t *comm_context);

u CX_d estroy_team_co ntext(ucc_team_context_t team_co ntext);

Semantics:
Context is created by ucc _create _team_context(), a local operation

Contexts represents a local resource - threads, injection queue, and/or network parallelism

Example: software injection queues (UCP Worker, List of UCP Endpoints), Switch local resources, Hardware injection
resources

Context can be coupled with threads, processes or tasks
A single MPI process can have multiple contexts
A single thread (pthread or OMP thread) can be coupled with multiple contexts

© 2019 Mellanox Technologies 8

PN

P s ‘AMI&
Communication Context (2) Millanox

An object to encapsulate local resource and express network parallelism

ucc_create_team_context(ucc_team_lib_t comm_lib_context, ucc_team_context_config t
ctx_config, ucc_team_context_t *comm_context);

u CX_d estroy_team_co ntext(ucc_team_context_t team_co ntext);

Semantics:

Context can be bound to a specific core, socket, or an accelerator
Provides an ability to express affinity

Context can participate in multiple group operations
Private context can participate in only one group operation (team)
Shared context can participate in multiple group operations

Multiple contexts per team (from same thread) can be supported
Software and hardware collectives

© 2019 Mellanox Technologies 9

PN

v
Customizing Context ﬂ.&

The usage model, operations supported, thread model, and
invocation/completion can be customized.

struct ucc_team_context_config {
ucc_network ops _t ops;
ucc _threading support_t thread support;
ucc_team completion type t completion type;
ucc_team _usage type tusage;

© 2019 Mellanox Technologies 10

.. ‘M
Customizing Context: Usage Model Melanox

Options:
" UCC as Network Library

" User implements the collective algorithms and UCC implements the data transfer channels in the context of team
" UCC as Collective library
" UCCimplements the collective algorithms and data transfer channels

Use cases:

" Require collective algorithms and implementation for collective communication
® Programming models using UCX for point-to-point communication

" Require a thin abstraction over hardware collective primitives
" Collective libraries that have explored and implemented collective algorithms

" Require a thin abstraction over point-to-point operations and need group abstractions
" OpenSHMEM contexts

" MPI Windows

© 2019 Mellanox Technologies 11

. : ‘M
Customizing Context: Operations Supported Melanox

Helps with transport selection, resource allocation, and management

Options:
" Only Point-to-point operations
" Enables creation of resources for only RMA and Point-to-point operations

“ Only Collective operations
" Enables creation of resources for only collective operations

" No communication operation

" Enables creation of group but no resources are allocated for collectives or RMA/P2P operations
" Use case: Required for symmetric memory APls, Memory allocation routines in OpenSHMEM

" Both Point-to-point and collective communication operations are supported

© 2019 Mellanox Technologies 12

. e ‘M
Customizing Context : Threads and Contexts Mellanox

Provides well-defined interaction between the threads and local resources

" Provide options for performance, flexibility and resource usage
" Sharing of resources between Teams

Options:
= SINGLE
" The context is accessed by a single thread

" The context participates in a single Team
® So resources are exclusive to one Team

" The libraries can implement it as a lock-free implementation

= SHARED

" The context is accessed by multiple threads
" The context can participate in multiple teams
" Resources are shared by multiple teams
" The library is required to protect critical sections

© 2019 Mellanox Technologies 13

Customizing Context: Invocation and Completion ﬁh@g&ﬂ

Options:
" Blocking: All operations on the context are blocking
" Non-blocking: All operations on the context are non-blocking operations

" Split-phase: One outstanding operation at a time, however, completion can be delayed
" Default: Both blocking and non-blocking operations can be posted

Use cases:

" OpenSHMEM only supports blocking operations.
" Support for split-phase barriers
" Support for persistent collective semantics

© 2019 Mellanox Technologies 14

Key Abstractions MMM
Communication (Team) Library

Communication Context

Teams

Endpoints

Collective Operation

Groups of Collectives

© 2019 Mellanox Technologies 15

Team: Membership

Who manages the participation in the group?
User Managed

" The user manages who participates in the team

" The user provides an OOB collective operation to exchange context among the members
" The members join the collective operation

" The scope of the team is defined by the OOB collectives

" For example, if the OOB is defined over shared memory, the team is created over shared memory.
= “UCC_TEAM_WORLD” is created by using PMIx collectives as OOB collectives

Library managed:
" The library (UCC) manages the membership

" UCC performs and implement a collective operation to determine the participation

AN

EEEEEEEEEE

© 2019 Mellanox Technologies 16

- : ‘M
Team: Operations for creating teams ftelano

ucc_team_create_post(

ucc_team_context_t team_context, ucc_team_config_t comm_config, oob_collectives_t
oob_collectives, ucc_team_ep_t *my_ep, ucc_team_t *new_team);

ucc_team_create_wait();

Semantics:
Created by processes, threads or tasks by calling glrﬁ?etresglobal resources for group communication
ucc_team_create_post() o _ _
: ; . N Synchronization buffers for one-sided collectives

A collective operation but no explicit synchronization _ _

among the processes or threads Temporary buffers for reduction operations
Non-blocking operation and only one active call z(;;zttcehczl:frfgzizor:sr‘i?'::’IOi;::ljng operations
at any given instance. qu

Filter the available operations and algorithms
Each process or thread passes local resource

object (context)
Achieve global agreement during the create operation

Passing NULL as OOB will result in creating a
“world” team

© 2019 Mellanox Technologies 17

AN

Team : Customizing team Mellanox
struct ucc_team_config t { Semantics:
ucc_post_ordering ordering; Ordering : All team members must invoke collective
S = — Rt . in the same order?
uint64_t num_outstanding_collectives; Yes for MPIl and No for TensorFlow and Persistent
ucc_team completion type t comple Co”eCtges ”
: , Outstanding collectives
tlon—type’ . Can help with resource management
ucc_collective _sync _type t sync; Blocking/Non-blocking
ucc_ep _range_contig ep_range; A team can be customized to be either blocking or non-
ucc_dt _type t datatype; blocking ,
Should Endpoints in a contiguous range ?
ucc_mem _params_t mem _params;
Datatype
} Can be customized for contiguous, strided, or non-

contiguous datatypes

Synchronization Model

On_Entry, On_Exit, or On_Both — this helps with global
resource allocation

© 2019 Mellanox Technologies 18

Customizing Team: Synchronizing Model

" NO_SYNC_ON_Entry: No synchronization on entry

" On entry each process can start the collective irrespective of other processes entered the collective or not

" Data readiness is ensured by the programming model user (not programming model itself)
" Use case : OpenSHMEM / UPC

" NO_SYNC_ON _Exit: No synchronization on exit

" On exit each process can exit the collective irrespective of other processes completed or not
" Provides guarantees about local completeness, not global state

" Use case/ Motivation: Broadcast, OpenSHMEM / UPC

" NO_SYNC: No synchronization on entry or exit
" Data readiness is ensured by the User

" Global completion guarantees are to be learned by the user
" Use case : OpenSHMEM/UPC

" Default: Synchronization on both entry and exit to the collective
“ Data readiness is ensured by the programming model and provides global state on completion

AN

EEEEEEEEEE

© 2019 Mellanox Technologies 19

v
Team : Query Operations A

ucc_get team_attribs(ucc_team_t ucc_team, ucc_team_attrib_t *team_atrib)

ucc_get team_size(ucc_team_t ucc_team);

ucc_get team_my_ep(ucc_team_t ucc_team, ucc_team_ep_t *ep);

ucc_get team_all_eps(ucc_team_t ucc_team, ucc_team_ep_t *ep, uint64_t num_eps);

All attributes of the team are available via ucc_team_attrib_t
Size, ordering, sync type, completion semantics, datatype, endpoints, and memory handles

Interfaces for some common attributes
Size and Endpoints

© 2019 Mellanox Technologies 20

v
Team : Splitting teams dhah

Supporting split operations in lower libraries will enable resource sharing
between parent and child teams

ucc_team_create_from_parent(ucc_team_ep my_ep, int color, ucc_team_t parent_team,
ucc_team_t *new_ucc_team);

Semantics:
Split
Collective operation over the parent team
Collective operations over the child team or can be a local operation (interface in the later slides)

Provides flexible way to create a team
Supports regular as well as irregular team creation

Inherits configuration from the parent team
Thread model: One active split operation per process

© 2019 Mellanox Technologies 21

Key Abstractions 0
Communication (Team) Library
Communication Context

Teams

Endpoints

Collective Operation

Groups of Collectives

© 2019 Mellanox Technologies 22

v
Endpoint e

An integer that represents the network address and/or team member

ucc_create_team_from_ep_list(ucc_team_t parent_ucc_team, ucc_team_ep *ep, uint64_t
num_eps, ucc_team_t *new_team);

ucc_create_team_from_ep_stride(ucc_team_t parent_ucc_team, uint64_t start_ep, uint64 _t
stride, uint64_t num_eps, ucc_team_t *new_team);

ucc_team_add_endpoint(ucc_team_t parent_ucc_team, ucc_team_context_t *team_context,
ucc_team_ep ep, ucc_team_t *new_team);

Use case:
Team creation only with a collective operation on the newly created team

Light-weight team creation by passing the list of endpoints
Enables lazy resource allocation

Support spawn semantics .i.e., supports adding an endpoint to the team

© 2019 Mellanox Technologies 23

Key Abstractions Mellanox
Communication (Team) Library
Communication Context
Teams
Endpoints

Collective Operations

Task and task list

© 2019 Mellanox Technologies 24

‘AM&
Collective Operations : Building blocks (1) Hitlanox

ucc_collective_init(ucc_coll _op_args coll _args, ucc_team_t team, ucc_coll_op _h *coll_handle);
ucc_collective_init_and_post(ucc_coll _op args coll_args, ucc_team_t team, ucc_coll_req
*request, ucc_coll_op_h *coll _handle);

int ucx_collective_post(ucc_coll_op h coll_handle, ucc_coll _req *request)
int ucx_collective_test(ucc_coll_req request);

int ucx_collective_wait(ucc_coll_req request);

int ucx_collective_finalize(ucc_coll_req request);

© 2019 Mellanox Technologies 25

Collective Operations : Building blocks (2)

Semantics:

" Collective operations : ucc_collective_init(...) and ucc_collective_init_and_post(...)
" Local operations: ucc_collective_post, test, wait, finalize
" Initialize with ucc_collective_init(...)
" |nitializes the resources required for a particular collective operation, but does not post the operation
" Completion
" The test routine provides the status, and wait routine can be used to complete the operation
" Finalize
" Releases the resources for the collective operation represented by the request
" The post, test, and wait operations are invalid after finalize

TECHHNOLOGIES

© 2019 Mellanox Technologies 26

: : : : ‘M
Collective Operations : How to build various Hellanox

collectives ?

ucc_collective_init(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_op_h *coll_handle);
ucc_collective_init_and_post(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_req *request,
ucc_coll_op_h *coll_handle);

int ucx_collective_post(ucc_coll_op_h *coll _handle, ucc_coll_req *request)
int ucx_collective_test(ucc_coll_req request);

int ucx_collective_wait(ucc_coll_req request);

int ucx_collective_finalize(ucc_coll_req request);

int ucx_collective_req_status(ucc_coll_req request);

Nonblocking and blocking collectives:
Can be implemented with Init_and_post and wait+finalize

Persistent Collectives:
Can be implemented using the building blocks - init, post, test, wait, finalize

Split-Phase

Can be implemented with Init_and_post and wait+finalize

© 2019 Mellanox Technologies 27

AN

Customizing Collective Operation (1) Mllanox
typedef struct ucc_collective_op_arguments Collective type, buffer information, and
reduction info

{ Customize the operation

ucc_collective type coll type;

ucc_coll_buffer_info t buffer_info; Synchronization type

: . Same sync_type as context_config / comm_config.
ucc_collect{ve_sync_type._t sy.nc_type, Valid to use the default (all synchronization) even
ucc_reduction_op reduction_info; when context and config are configured as on_entry,

ucc_error_type_terror_type; on_exit, or on_both but not vice versa

ucc_coll tag t co(l_/d,' Collective Tag
ucc_team_endpoint_t root; For unordered collectives

} ucc_coll_op_args;
Root endpoint for root-based operations

© 2019 Mellanox Technologies 28

‘M
Customizing Collective Operation (2) fielanos

Operation and Reduction Types

enum ucc_collective_type { enum ucc_reduction_op {
Barrier, OP _MAX,
Alltoall, OP_MIN,
Alltoally, OP_SUM,
Broadcast, OP_PROD,
Gather, OP_AND,
Allgather, OP_OR,
Reduce, OP_XOR,
Allreduce, OP_MAXLOC,
Scatter, OP_MINLOC
FAN_IN, }
FAN_OUT

© 2019 Mellanox Technologies 29

AN

Customizing Collective Operation (3) Miellanox
Buffer Information
typedef struct ucc_coll_buffer_info { src_buffer, src_len, dest_buffer, and

. dest len standard semantics
void *src_buffer; -

size_t src_len;

_ Flags
void *dest_buffer; Persistent
size_t dest len, Symmetric
: % : * In-buffer
int64 flags, /* in-buffer */

} ucc_coll_buffer_info _t

© 2019 Mellanox Technologies 30

‘/ZM&
Customizing Collective Operation (3) Millanox

Error Types

enum ucc_error_type { Local:
There is no agreement on the errors reported to the
LOCAL=0, members
GLOBAL=1, If agreement is needed, it is the user responsibility to
} achieve it
Global:

All members return the same error

© 2019 Mellanox Technologies 31

Customize Context or Team or Collective Operation? ﬁg&ﬂ

This is a philosophical question as it varies with the programming environment.
So, some guidelines

" Make a local decision, when you can.
" This reduces the number of global decisions, hence fewer collectives during initialization
" Can change the decision with less cost. i.e., no collective required

" Provide mechanism to modify local decision during the global agreement process

" Provide mechanism to modify the local decision or global decision during the invocation time

© 2019 Mellanox Technologies 32

v
Key Abstractions ﬁiﬂ}*
Communication (Team) Library
Communication Context
Teams
Endpoints
Collective Operations

Task and task list

© 2019 Mellanox Technologies 33

Collective Groups M%hellg&@zz

Collective groups are a group of ordered or un-ordered collective operations

Use Case:

" Collective groups enable the implementation of hierarchical collectives

" |t is well established that by tailoring the algorithm and customizing the implementation to various communication
mechanisms in the system can achieve higher performance and scalability

How to express groups of collectives?

" Triggered Operations

" O Pros: Hardware Support

" o Cons: Expressing
" Collective Schedules as DAGs

" O Pros: Highly Expressible (parallelism, dependencies)

" o Cons: Leveraging hardware trigger mechanism is tricky
" Chained/List Collective Operations

" O Pros: Easy to program and implement

" o Cons: Expressing parallelism can be a bit awkward

© 2019 Mellanox Technologies 34

Collective Groups: Task and Task List

Collective groups are a group of ordered or un-ordered collective operations

Task: Represents a collective operation and its corresponding team

Task List: Represents a collective operation group executed either in order or unordered

Task1

Reduce

~\

J

Task list for Allreduce (leader process)

Task2

e

_

~

J

Task3

s

- Allreduce ‘ Bcast

_

Task1

_

Reduce

Task2

AN

Mellanox

Task list for Allreduce (non-leader process)

© 2019 Mellanox Technologies

35

v
Collective Groups A

Operations to create and execute tasks

ucc_create_coll_task(ucc_coll op _args_t args, ucc_team_t team, ucc_coll_task_t *task);
ucc_create_task_list(int num_tasks, bool ordered, ucc_coll_task_t tasks[], ucc_coll_task_list
*task_list);

ucc_schedule_task_list(int priority, ucc_coll_task_t task_list, ucc_task_execution_t *active_list);
ucc_complete_tasks(ucc_execution_t active_graph);

Semantics:
All task operations are local
ucc_create _coll _task() creates a task from collective arguments and team
ucc_create _task list() creates either an ordered or unordered list of tasks

ucc_schedule task list() schedules the tasks to be executed either parallel(unordered) or serial(if
ordered)

All members of the team in the task are expected to execute the same collective operation; otherwise, the operation is
undefined.

All task executions are non-blocking and asynchronous
ucc_complete tasks() completes the execution of tasks in the task_list

© 2019 Mellanox Technologies 36

v
Key Abstractions ﬁiﬂ}*
Communication (Team) Library
Communication Context
Teams
Endpoints
Collective Operations

Task and task list

© 2019 Mellanox Technologies 37

Global memory management A

ucc_global_mem_alloc(ucc_team_t team, size_t size, ucc_mem_constraints constraints,
ucc_mem_hints hints, ucc_global_mem_t *mem_handle);

ucc_global_mem_free(ucc_global_mem_t mem_handle, ucc_team_t team)
ucc_global_mem_get_attrib(ucc_global mem_t mem, ucc_global _mem_attrib *attributes);

Semantics:
Manages memory on each of member of the team

The constraints argument control the semantics
Example — symmetric, alighnment

The hints provide information about usage (think about mbind)
Memory policy — local, shared,
Usage - atomics, counters, small message, large message, MPIl windows

Use cases:
OpenSHMEM heaps, MPI Windows, PGAS models, and requirement for some RFPs (for example CORAL2)
Internal for collectives — sync buffers, temporary work buffers

© 2019 Mellanox Technologies 38

‘M
A Collective Communication API in UCF should Aellanox

support

" A wider variety of programming models
" MPIlis important for HPC
" Other programming models are important and will grow in importance

" Hardware collectives should be a first-class citizen
" Mellanox and other vendors already support hardware collectives

" Hierarchies should be a first-class citizen

" Itis well-established that hierarchical collectives achieve higher performance and scalability
" UCC API should support abstractions to build hierarchies

" Enable flexible resource allocation
" Lazy resource allocation
" Local and global decisions

" |terative collectives should be supported
" Build once and invoke multiple times.

" Support for various synchronization models
" Both strict and relaxed synchronization models should be supported

" Support for P2P operations and global memory allocation operations

© 2019 Mellanox Technologies 39

o

TECHHNOLOGIES

L)
Thank You
A it\

© 2019 Mellanox Technologies

